CHEM 3.6 (5 credits)

Demonstrate understanding of equilibrium principals

in aqueous systems

• acidic and basic solutions

- concentrations of dissolved species
- K_s calculations
- common ion effect
- predicting precipitation/dissolution
- K_a and pK_a calculations
- concentration of species present
- pH and conductivity
- titration curves and selection of indicators

Write K_a expressions for the following acids:

 $NH_{4}^{+} + H_{2}O \implies NH_{3} + H_{3}O^{+} \qquad K_{a} = \underline{[NH_{3}][H_{3}O^{+}]} \\ [NH_{4}^{+}]$ $HOCI + H_{2}O \implies OCI^{-} + H_{3}O^{+} \qquad K_{a} = \underline{[OCI^{-}][H_{3}O^{+}]} \\ [HOCI]$ $K_{a}(HCOOH) \qquad K_{a} = \underline{[HCOO^{-}][H_{3}O^{+}]} \\ [HCOOH]$

Equilibrium expressions

You learnt last year in 2.6 how to write and calculate equilibrium expressions. Quick recap:

For the equation $Ca(NO_3)_{2(s)} \rightarrow Ca^{2+}_{(ag)} + 2 NO_3^{-}_{(ag)}$ The equilibrium expression is: $K_c = [Ca^{2+}][NO_3^{-}]^2$ [Ca(NO₃)₂] [reactants]

Key words

Solvent Solute Saturated solution Solubility Solubility product

Solubility constant (K_s)

K_s is a new constant this year – the solubility product or solubility constant

Just like K_c except we don't include solids (as they aren't soluble!) For the equation $Ca(NO_3)_{2(s)} \rightarrow Ca^{2+}_{(aq)} + 2 NO_3^{-}_{(aq)}$

The solubility constant is: $K_s = [Ca^{2+}][NO_3^{-}]^2$

K_s is constant so long as the temperature is constant.

The greater the value of K_s the better the solubility. We are dealing with sparingly soluble ionic compounds this year K_s values will be small

Write K_s expressions for the following ionic solids

MgS → Mg²⁺ + S²⁻ K_s = [Mg²⁺] [S²⁻] CaF₂ → Ca²⁺ + 2 F⁻ K_s = [Ca²⁺] [F⁻]² Ba(OH)₂ Ba(OH)₂ → Ba²⁺ + 2 OH⁻ K_s = [Ba²⁺] [OH⁻]²

magnesium oxide

 $MgO \rightarrow Mg^{2+} + O^{2-}$ $K_s = [Mg^{2+}] [O^{2-}]$

mol.L⁻¹ and g.L⁻¹

Solubilities of ions in solution will be given to you as either mol.L⁻¹ or g.L⁻¹.

We need to be able to convert between these two units

The solubility of Mg(OH)₂ is 1.16 x 10⁻² g.L⁻¹, what is its solubility in mol.L⁻¹? **1.98 x 10⁻⁴ mol.L⁻¹**

Stronium flouride (SrF_2) has a solubility of 0.012 g per 100 mL of water. What is its solubility in mol.L⁻¹? M(SrF₂) = 125.6 g.mol⁻¹

0.120 g.L⁻¹ Workbook **9.6 x 10⁻⁴ mol.L**⁻¹ pg 190 - 192

Calculations with K_s

There are two types of ionic solids – depending on their formula.AB- NaCl, CaSO₄ A_2B/AB_2 - Na₂SO₄, Ag₂CO₃MgCl₂, Cu(NO₃)₂

We are expected to be able to calculate K_s if given the concentration of ions for a sparingly soluble ionic salt OR

calculate the solubility (and/or concentration of ions in solution) of a sparingly soluble ionic salt if given K_s.

 $A_x B_y \rightarrow x A + y B$ $K_s = [A]^x [B]^y$

In both cases always write the dissolving equation and the $\rm K_{s}$ expression first

Calculating K_s from solubility

The solubility of AgI in pure water is 9.1 x 10⁻⁹ mol.L⁻¹, calculate the solubility constant, K_s.

$$Agl_{(s)} \rightarrow Ag^{+}_{(aq)} + I^{-}_{(aq)} \qquad K_{s} = [Ag^{+}] [I^{-}]$$

$$[Ag^{+}] = 9.1 \times 10^{-9} \text{ mol.L}^{-1} \qquad [I^{-}] = 9.1 \times 10^{-9} \text{ mol.L}^{-1} \qquad K_{s} - \text{ no units!}$$

$$K_{s} = (9.1 \times 10^{-9})^{2}$$

$$= 8.281 \times 10^{-17} \text{ k}$$

The solubility of CaF₂ in pure water is 2.3 x 10^{-4} mol.L⁻¹, calculate the solubility constant, K_s.

 $CaF_{2(s)} \xrightarrow{7} Ca^{2+}_{(aq)} + 2F_{(aq)}^{-} \qquad K_{s} = [Ca^{2+}] [F^{-}]^{2}$ $[Ca^{2+}] = 2.3 \times 10^{-4} \text{ mol.L}^{-1} [F^{-}] = 2 \times 2.3 \times 10^{-4} \text{ mol.L}^{-1} = 4.6 \times 10^{-4} \text{ mol.L}^{-1}$ $K_{s} = 2.3 \times 10^{-4} \times (4.6 \times 10^{-4})^{2}$ $= 4.87 \times 10^{-11}$

Calculating K_s from solubility

The solubility of Ag_2O in pure water is 0.00108 mol.L⁻¹, calculate the solubility constant, K_s .

 $Ag_{2}O_{(s)} \xrightarrow{7} 2 Ag^{+}_{(aq)} + O^{2-}_{(aq)} \qquad K_{s} = [Ag^{+}]^{2} [O^{2-}]$ $[O^{2-}] = 0.00108 \text{ mol.L}^{-1}$ $[Ag^{+}] = 2 \times 0.00108 \text{ mol.L}^{-1} = 0.00216 \text{ mol.L}^{-1} \qquad K_{s} = 0.00216^{2} \times 0.00108$ $= 5.04 \times 10^{-9}$

The solubility of $BaSO_4$ in pure water is 1.05 x 10⁻⁵ mol.L⁻¹, calculate the solubility constant, K_s.

 $BaSO_{4(s)} \xrightarrow{\rightarrow} Ba^{2+}_{(aq)} + SO_{4}^{2-}_{(aq)} \qquad K_{s} = [Ba^{2+}] [SO_{4}^{2-}]$ $[SO_{4}^{2-}] = 1.05 \times 10^{-5} \text{ mol.L}^{-1}$ $[Ba^{2+}] = 1.05 \times 10^{-5} \text{ mol.L}^{-1} \qquad K_{s} = (1.05 \times 10^{-5} \text{ mol.L}^{-1})^{2}$ $= 1.10 \times 10^{-10}$

(a) Write the equation for PbI₂ dissolving in water

(b) Write an expression for the solubility constant for Pbl₂

(c) If the solubility of PbI_2 in water is 0.00164 mol.L⁻¹ what is the concentration of Pb^{2+} and I⁻ in solution?

(d) What is K_s for Pbl₂?

2013 Exam Q 2

QUESTION TWO

In an experiment, a saturated solution was made by dissolving 1.44×10^{-3} g of Ag₂CrO₄ in water, and making it up to a volume of 50.0 mL.

 $M(Ag_2CrO_4) = 332 \text{ g mol}^{-1}$

(a) Write the K_s expression for Ag₂CrO₄(s).

TWO
(a)
$$K_s = [Ag^+]^2 [CrO_4^{2^-}]$$

- (b) (i) Calculate the solubility of Ag₂CrO₄(s), and hence give the [Ag⁺] and [CrO₄²⁻] in the solution.
 - (ii) Determine the $K_s(Ag_2CrO_4)$.

2013 Exam Q2

(b)(i) $n(\text{Ag}_{2}\text{CrO}_{4}) = \frac{1.44 \times 10^{-3}}{332}$ $= 4.33 \times 10^{-6} \text{ mol in 50 mL}$ $[\text{Ag}_{2}\text{CrO}_{4}] = \frac{4.33 \times 10^{-6}}{50 \times 10^{-3}}$ $= 8.67 \times 10^{-5} \text{ mol L}^{-1}$ $[\text{Ag}^{+}] = 8.67 \times 10^{-5} \times 2 = 1.73 \times 10^{-4} \text{ mol L}^{-1}$ $[\text{CrO}_{4}^{2^{-}}] = 8.67 \times 10^{-5} \text{ mol L}^{-1}$

(ii)
$$K_{\rm s} = (1.73 \times 10^{-4})^2 (8.67 \times 10^{-5})$$

= 2.61×10⁻¹²

2013 Exam Q 2

For achieved:

- K_s correct in (a)
- Working correct OR correct answer but minimal working in (b) (i)
- Correct ratio of [Ag⁺] and [CrO₄²⁻] in (b) (i)
- Use of 4s³ in (b) (ii)

For merit:

• Correct calculation of concentration of Ag₂CrO₄ in (b) (i)

For excellence:

Correct calculation of concentration of Ag⁺ ions and CrO₄²⁻ ions in
 (b) (i) AND K_s in (b) (ii)

Calculating solubility from K_s

The solubility constant of $PbSO_4$ is 1.6 x 10⁻⁸. Calculate the solubility of $PbSO_4$ in water and the concentrations of the ions in solution.

$$PbSO_{4(s)} \rightarrow Pb^{2+}_{(aq)} + SO_4^{2-}_{(aq)} \qquad K_s = [Pb^{2+}] [SO_4^{2-}]$$

If the solubility of $PbSO_4$ is x then we can substitute into the K_s equation

$$x^{2} = 1.6 \times 10^{-8}$$

 $x = \sqrt{1.6 \times 10^{-8}}$
 $x = 2.82 \times 10^{-4}$

The solubility of PbSO₄ is 2.82 x 10⁻⁴ mol.L⁻¹

The concentration of Pb²⁺ ions in solution is 2.82 x 10⁻⁴ mol.L⁻¹

The concentration of SO_4^{2-} ions in solution is 2.82 x 10⁻⁴ mol.L⁻¹

Calculating solubility from K_s

The solubility constant of Ag_2CrO_4 is 9.0 x 10^{-12} . Calculate the solubility of Ag_2CrO_4 in water and the concentrations of the ions in solution.

$$Ag_2CrO_{4(s)} \rightarrow 2 Ag^{+}_{(aq)} + CrO_4^{2-}_{(aq)} K_s = [Ag^+]^2 [CrO_4^{2-}]$$

If the solubility of Ag_2CrO_4 is x then we can substitute into the K_s equation

$$(2x)^{2} x = K_{s}$$

$$4x^{3} = 9.0 \times 10^{-12}$$

$$x = \sqrt[3]{\frac{9.0 \times 10^{-12}}{4}}$$

$$x = 1.31 \times 10^{-4}$$

The solubility of Ag₂CrO₄ is 1.31 x 10⁻⁴ mol.L⁻¹

The concentration of Ag⁺ ions in solution is 2.62 x 10^{-4} mol.L⁻¹ The concentration of CrO₄²⁻ ions in solution is 1.31 x 10^{-4} mol.L⁻¹

2012 Exam

QUESTION TWO

Iron(II) hydroxide, Fe(OH)₂, has a K_s of 4.10×10^{-15} at 25°C.

(a) (i) Write the equation for Fe(OH), dissolving in water.

 $Fe(OH)_2(s) \rightarrow Fe^{2+}(aq) + 2OH^{-}(aq) \qquad (states not required, allow \rightleftharpoons)$

(ii) Write the expression for $K_s(Fe(OH)_2)$.

 $K_{\rm s} = [{\rm Fe}^{2+}] [{\rm OH}^{-}]^2$

Let s be the solubility: $[Fe^{2^+}] = s$ $[OH^-] = 2s$ $K_s = s \times (2s)^2$ 4.10 × 10⁻¹⁵ = 4s^3 s = 1.01 × 10^{-5} mol L^{-1}
Solubility of Fe(OH)₂(s) = 1.01 × 10^{-5} mol L^{-1}

2014 Exam

QUESTION TWO

A flask contains a saturated solution of PbC12 in the presence of undissolved PbC12.

(a) (i) Write the equation for the dissolving equilibrium in a saturated solution of PbC1₂.

 $PbCl_2(s) \rightleftharpoons Pb^{2+}(aq) + 2Cl^{-}(aq)$

(ii) Write the expression for $K_s(PbC1_2)$.

(a) Write the equation for PbBr₂ dissolving in water
(b) Write an expression for the solubility product of PbBr₂ dissolving in water

(c) If the solubility of $PbBr_2$ in water at room temperature is 2.65 x 10^{-2} mol.L⁻¹ what is the concentration of Pb^{2+} and Br^- in solution?

(d) How would you calculate the solubility of PbBr₂ if $K_s = 7.62 \times 10^{-6}$ at 0 °C?

- a) Write the equation for $CuCO_3$ dissolving and the K_s expression.
- b) If x = solubility, substitute in to the K_s expression to solve for x

 $CuCO_{3(s)} \rightarrow Cu^{2+}{}_{(aq)} + CO_{3}^{2-}{}_{(aq)}$ $K_{s} = [Cu^{2+}][CO_{3}^{2-}]$ AB $K_{s} = x^{2}$

- c) Write the equation for Ag_2CO_3 dissolving and the K_s expression.
- d) If x = solubility, substitute into the K_s expression to solve for x

$$Ag_2CO_{3(s)} \rightarrow 2 Ag^+_{(aq)} + CO_3^{2-}_{(aq)}$$

 $K_s = [Ag^+]^2[CO_3^{2-}]$
 $K_s = 4x^3$
 A_2B

- e) Write the equation for Cul₂ dissolving and the K_s expression.
- f) If x = solubility, substitute into the K_s expression to solve for x

$$Cul_{2(s)} \rightarrow Cu^{2+}{}_{(aq)} + 2 I^{-}{}_{(aq)}$$

 $K_{s} = [Cu^{2+}][I^{-}]^{2}$
 $K_{s} = 4x^{3}$
 AB_{2}