CHEM 3.6 (5 credits)

Demonstrate understanding of equilibrium principals in aqueous systems

- sparingly soluble ionic solids
- acidic and basic solutions
- concentrations of dissolved species
- K_{s} calculations
- common ion effect
- predicting precipitation/dissolution
- K_{a} and pK_{a} calculations
- concentration of species present
- pH and conductivity
- titration curves and selection of indicators

Do now:

Write K_{a} expressions for the following acids:
$\mathrm{NH}_{4}^{+}+\mathrm{H}_{2} \mathrm{O}$
$\mathrm{NH}_{3}+\mathrm{H}_{3} \mathrm{O}^{+}$

$$
\mathrm{K}_{\mathrm{a}}=\frac{\left[\mathrm{NH}_{3}\right]\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]}{\left[\mathrm{NH}_{4}^{+}\right]}
$$

$\mathrm{HOCl}+\mathrm{H}_{2} \mathrm{O}$

$$
\mathrm{OCl}^{-}+\mathrm{H}_{3} \mathrm{O}^{+} \quad \mathrm{K}_{\mathrm{a}}=\frac{\left[\mathrm{OCl}^{-}\right]\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]}{[\mathrm{HOCl}]}
$$

$\mathrm{K}_{\mathrm{a}}(\mathrm{HCOOH}) \quad \mathrm{K}_{\mathrm{a}}=\frac{\left[\mathrm{HCOO}^{-}\right]\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]}{[\mathrm{HCOOH}]}$

Equilibrium expressions

You learnt last year in 2.6 how to write and calculate equilibrium expressions. Quick recap:
For the equation $\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2(\mathrm{~s})} \rightarrow \mathrm{Ca}^{2+}{ }_{(\mathrm{aq})}+2 \mathrm{NO}_{3}{ }^{-}(\mathrm{aq})$
The equilibrium expression is: $\mathrm{K}_{\mathrm{c}}=\frac{\left[\mathrm{Ca}^{2+}\right]\left[\mathrm{NO}_{3}{ }^{-}\right]^{2}}{\left[\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}\right]}$
$\frac{\text { [products] }}{\text { [reactants] }}$

Key words
Solvent
Solute
Saturated solution
Solubility
Solubility product

Solubility constant (K_{s})

K_{s} is a new constant this year - the solubility product or solubility constant

Just like K_{c} except we don't include solids (as they aren't soluble!)
For the equation $\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2(s)} \rightarrow \mathrm{Ca}^{2+}{ }_{(\mathrm{aq})}+2 \mathrm{NO}_{3}{ }^{-}(\mathrm{aq})$
The solubility constant is: $\mathrm{K}_{\mathrm{s}}=\left[\mathrm{Ca}^{2+}\right]\left[\mathrm{NO}_{3}^{-}\right]^{2}$
K_{s} is constant so long as the temperature is constant.
The greater the value of K_{s} the better the solubility. We are dealing with sparingly soluble ionic compounds this year K_{s} values will be small

Do now:

Write K_{s} expressions for the following ionic solids
$\mathrm{MgS} \rightarrow \mathrm{Mg}^{2+}+\mathrm{S}^{2-} \quad \mathrm{K}_{\mathrm{s}}=\left[\mathrm{Mg}^{2+}\right]\left[\mathrm{S}^{2-}\right]$
$\mathrm{CaF}_{2} \rightarrow \mathrm{Ca}^{2+}+2 \mathrm{~F}^{-} \quad \mathrm{K}_{\mathrm{s}}=\left[\mathrm{Ca}^{2+}\right]\left[\mathrm{F}^{-}\right]^{2}$
$\mathrm{Ba}(\mathrm{OH})_{2} \quad \mathrm{Ba}(\mathrm{OH})_{2} \rightarrow \mathrm{Ba}^{2+}+2 \mathrm{OH}^{-} \quad \mathrm{K}_{\mathrm{s}}=\left[\mathrm{Ba}^{2+}\right]\left[\mathrm{OH}^{-}\right]^{2}$
magnesium oxide

$$
\mathrm{MgO} \rightarrow \mathrm{Mg}^{2+}+\mathrm{O}^{2-} \quad \mathrm{K}_{\mathrm{s}}=\left[\mathrm{Mg}^{2+}\right]\left[\mathrm{O}^{2-}\right]
$$

mol. L^{-1} and g.L-1

Solubilities of ions in solution will be given to you as either mol.L-1 or g. L $^{-1}$.
We need to be able to convert between these two units

workbook pg 192 Q3

The solubility of $\mathrm{Mg}(\mathrm{OH})_{2}$ is $1.16 \times 10^{-2} \mathrm{~g} \cdot \mathrm{~L}^{-1}$, what is its solubility in mol.L ${ }^{-1}$? $\quad 1.98 \times 10^{-4} \mathrm{~mol}^{-\mathrm{L}^{-1}}$

Stronium flouride $\left(\mathrm{SrF}_{2}\right)$ has a solubility of 0.012 g per 100 mL of water. What is its solubility in mol. L^{-1} ? $\mathrm{M}\left(\mathrm{SrF}_{2}\right)=125.6 \mathrm{~g} \cdot \mathrm{~mol}^{-1}$
$0.120 \mathrm{~g} . \mathrm{L}^{-1}$
$9.6 \times 10^{-4} \mathrm{~mol} . \mathrm{L}^{-1}$

Workbook
pg 190-192

Calculations with K_{s}

There are two types of ionic solids - depending on their formula.
$\mathrm{AB} \quad-\mathrm{NaCl}, \mathrm{CaSO}_{4}$
$\mathrm{A}_{2} \mathrm{~B} / \mathrm{AB}_{2} \quad-\mathrm{Na}_{2} \mathrm{SO}_{4}, \mathrm{Ag}_{2} \mathrm{CO}_{3} \quad \mathrm{MgCl}_{2}, \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}$
We are expected to be able to calculate K_{s} if given the concentration of ions for a sparingly soluble ionic salt OR
calculate the solubility (and/or concentration of ions in solution) of a sparingly soluble ionic salt if given K_{s}.
$A_{x} B_{y} \rightarrow x A+y B \quad K_{s}=[A]^{x}[B]^{y}$
In both cases always write the dissolving equation and the K_{s} expression first

Calculating K_{s} from solubility

The solubility of Agl in pure water is $9.1 \times 10^{-9} \mathrm{~mol}^{\mathrm{L}} \mathrm{L}^{-1}$, calculate the solubility constant, K_{s}.

$$
\mathrm{K}_{\mathrm{s}}=\left[\mathrm{Ag}^{+}\right]\left[\mathrm{l}^{-}\right]
$$

$\left[\mathrm{Ag}^{+}\right]=9.1 \times 10^{-9} \mathrm{~mol} . \mathrm{L}^{-1}$

$$
\left[\mathrm{I}^{-}\right]=9.1 \times 10^{-9} \mathrm{~mol}^{\mathrm{L}^{-1}}
$$

$$
\begin{aligned}
\mathrm{K}_{\mathrm{s}} & =\left(9.1 \times 10^{-9}\right)^{2} \\
& =8.281 \times 10^{-17} \downarrow
\end{aligned}
$$

The solubility of CaF_{2} in pure water is 2.3×10^{-4} mol. L^{-1}, calculate the solubility constant, K_{s}.

$$
\begin{aligned}
& \mathrm{CaF}_{2(\mathrm{~s})} \rightarrow \mathrm{Ca}^{2+}{ }_{(\mathrm{aq})}+2 \mathrm{~F}^{-}{ }_{(\mathrm{aq})} \quad \mathrm{K}_{\mathrm{s}}=\left[\mathrm{Ca}^{2+}\right]\left[\mathrm{F}^{-}\right]^{2} \\
& {\left[\mathrm{Ca}^{2+}\right]=2.3 \times 10^{-4}{\mathrm{~mol} . \mathrm{L}^{-1}}\left[\mathrm{~F}^{-}\right]=2 \times 2.3 \times 10^{-4} \mathrm{~mol}^{-\mathrm{L}^{-1}}=4.6 \times 10^{-4} \mathrm{~mol}^{-\mathrm{L}^{-1}}} \\
& \mathrm{~K}_{\mathrm{s}}=2.3 \times 10^{-4} \times\left(4.6 \times 10^{-4}\right)^{2} \\
& =4.87 \times 10^{-11}
\end{aligned}
$$

Calculating K_{s} from solubility

The solubility of $\mathrm{Ag}_{2} \mathrm{O}$ in pure water is 0.00108 mol. L^{-1}, calculate the solubility constant, K_{s}.

$$
\left.\mathrm{Ag}_{2} \mathrm{O}_{(\mathrm{s})} \rightarrow 2 \mathrm{Ag}_{(\mathrm{aq})}^{+}+\mathrm{O}_{(\mathrm{aq})}^{2-} \quad \mathrm{K}_{\mathrm{s}}=\left[\mathrm{Ag}^{+}\right]^{2}\left[\mathrm{O}^{2-}\right]=0.00108 \mathrm{~mol} . \mathrm{L}^{-1}\right]
$$

$\left[\mathrm{Ag}^{+}\right]=2 \times 0.00108 \mathrm{~mol} . \mathrm{L}^{-1}=0.00216 \mathrm{~mol} . \mathrm{L}^{-1} \quad \mathrm{~K}_{\mathrm{s}}=0.00216^{2} \times 0.00108$ $=5.04 \times 10^{-9}$

The solubility of BaSO_{4} in pure water is 1.05×10^{-5} mol. L^{-1}, calculate the solubility constant, K_{s}.

$\left[\mathrm{Ba}^{2+}\right]=1.05 \times 10^{-5} \mathrm{~mol} . \mathrm{L}^{-1}$

$$
\begin{aligned}
\mathrm{K}_{\mathrm{s}} & =\left(1.05 \times 10^{-5} \mathrm{~mol}^{-\mathrm{L}^{-1}}\right)^{2} \\
& =1.10 \times 10^{-10}
\end{aligned}
$$

Do now:

(a) Write the equation for Pbl_{2} dissolving in water
(b) Write an expression for the solubility constant for PbI_{2}
(c) If the solubility of PbI_{2} in water is 0.00164 mol. L^{-1} what is the concentration of Pb^{2+} and I^{-}in solution?
(d) What is K_{s} for PbI_{2} ?

QUESTION TWO

2013 Exam Q 2

In an experiment, a saturated solution was made by dissolving $1.44 \times 10^{-3} \mathrm{~g}$ of $\mathrm{Ag}_{2} \mathrm{CrO}_{4}$ in water, and making it up to a volume of 50.0 mL .
$M\left(\mathrm{Ag}_{2} \mathrm{CrO}_{4}\right)=332 \mathrm{~g} \mathrm{~mol}^{-1}$
(a) Write the K_{s} expression for $\mathrm{Ag}_{2} \mathrm{CrO}_{4}(s)$.

TWO $\quad K_{\mathrm{s}}=\left[\mathrm{Ag}^{+}\right]^{2}\left[\mathrm{CrO}_{4}{ }^{2-}\right]$
(a)
(i) Calculate the solubility of $\mathrm{Ag}_{2} \mathrm{CrO}_{4}(s)$, and hence give the $\left[\mathrm{Ag}^{+}\right]$and $\left[\mathrm{CrO}_{4}{ }^{2-}\right]$ in the solution.
(ii) Determine the $K_{\mathrm{s}}\left(\mathrm{Ag}_{2} \mathrm{CrO}_{4}\right)$.

2013 Exam Q2

(b)(i)

$$
\begin{aligned}
& n\left(\mathrm{Ag}_{2} \mathrm{CrO}_{4}\right)=\frac{1.44 \times 10^{-3}}{332} \\
& =4.33 \times 10^{-6} \mathrm{~mol} \mathrm{in} 50 \mathrm{~mL} \\
& {\left[\mathrm{Ag}_{2} \mathrm{CrO}_{4}\right]=\frac{4.33 \times 10^{-6}}{50 \times 10^{-3}}} \\
& \quad=8.67 \times 10^{-5} \mathrm{~mol} \mathrm{~L} \\
& \\
& {\left[\mathrm{Ag}^{+}\right]=8.67 \times 10^{-5} \times 2=1.73 \times 10^{-4} \mathrm{~mol} \mathrm{~L}^{-1}} \\
& {\left[\mathrm{CrO}_{4}^{2-}\right]=8.67 \times 10^{-5} \mathrm{~mol} \mathrm{~L}^{-1}}
\end{aligned}
$$

$$
\begin{align*}
& K_{\mathrm{s}}=\left(1.73 \times 10^{-4}\right)^{2}\left(8.67 \times 10^{-5}\right) \tag{ii}\\
& =2.61 \times 10^{-12}
\end{align*}
$$

2013 Exam Q 2

For achieved:

- K_{s} correct in (a)
- Working correct OR correct answer but minimal working in (b) (i)
- Correct ratio of $\left[\mathrm{Ag}^{+}\right]$and $\left[\mathrm{CrO}_{4}{ }^{2-}\right]$ in (b) (i)
- Use of $4 \mathrm{~s}^{3}$ in (b) (ii)

For merit:

- Correct calculation of concentration of $\mathrm{Ag}_{2} \mathrm{CrO}_{4}$ in (b) (i)

For excellence:

- Correct calculation of concentration of Ag^{+}ions and $\mathrm{CrO}_{4}{ }^{2-}$ ions in (b) (i) AND K_{s} in (b) (ii)

Calculating solubility from K_{s}

The solubility constant of PbSO_{4} is 1.6×10^{-8}. Calculate the solubility of PbSO_{4} in water and the concentrations of the ions in solution.

$$
\mathrm{PbSO}_{4(\mathrm{~s})} \rightarrow \mathrm{Pb}^{2+}{ }_{(\mathrm{aq})}+\mathrm{SO}_{4}{ }^{2-}{ }_{(\mathrm{aq})} \quad \mathrm{K}_{\mathrm{s}}=\left[\mathrm{Pb}^{2+}\right]\left[\mathrm{SO}_{4}{ }^{2-}\right]
$$

If the solubility of PbSO_{4} is x then we can substitute into the K_{s} equation

$$
\begin{aligned}
x^{2} & =1.6 \times 10^{-8} \\
x & =\sqrt{1.6 \times 10^{-8}} \\
x & =2.82 \times 10^{-4}
\end{aligned}
$$

The solubility of PbSO_{4} is 2.82×10^{-4} mol. L^{-1}
The concentration of Pb^{2+} ions in solution is $2.82 \times 10^{-4} \mathrm{~mol}^{-L^{-1}}$
The concentration of $\mathrm{SO}_{4}{ }^{2-}$ ions in solution is $2.82 \times 10^{-4} \mathrm{~mol} . \mathrm{L}^{-1}$

Calculating solubility from K_{s}

The solubility constant of $\mathrm{Ag}_{2} \mathrm{CrO}_{4}$ is 9.0×10^{-12}. Calculate the solubility of $\mathrm{Ag}_{2} \mathrm{CrO}_{4}$ in water and the concentrations of the ions in solution.

$$
\mathrm{Ag}_{2} \mathrm{CrO}_{4(\mathrm{~s})} \rightarrow 2 \mathrm{Ag}_{(\mathrm{aq})}^{+}+\mathrm{CrO}_{4}{ }^{2-}{ }_{(\mathrm{aq})} \quad \mathrm{K}_{\mathrm{s}}=\left[\mathrm{Ag}^{+}\right]^{2}\left[\mathrm{CrO}_{4}^{2-}\right]
$$

If the solubility of $\mathrm{Ag}_{2} \mathrm{CrO}_{4}$ is x then we can substitute into the K_{s} equation

$$
\begin{aligned}
&(2 x)^{2} x=K_{s} \\
& 4 x^{3}=9.0 \times 10^{-12} \\
& x=\sqrt[3]{\left(\frac{9.0 \times 10^{-12}}{4}\right)} \\
& x=1.31 \times 10^{-4}
\end{aligned}
$$

The solubility of $\mathrm{Ag}_{2} \mathrm{CrO}_{4}$ is $1.31 \times 10^{-4} \mathrm{~mol}$. L^{-1}
The concentration of Ag^{+}ions in solution is $2.62 \times 10^{-4} \mathrm{~mol} . \mathrm{L}^{-1}$
The concentration of $\mathrm{CrO}_{4}{ }^{2-}$ ions in solution is $1.31 \times 10^{-4} \mathrm{~mol}^{-\mathrm{L}^{-1}}$

2012 Exam

QUESTION TWO

Iron(II) hydroxide, $\mathrm{Fe}(\mathrm{OH})_{2}$, has a K_{s} of 4.10×10^{-15} at $25^{\circ} \mathrm{C}$.
(a) (i) Write the equation for $\mathrm{Fe}(\mathrm{OH})_{2}$ dissolving in water.

$$
\mathrm{Fe}(\mathrm{OH})_{2}(s) \rightarrow \mathrm{Fe}^{2+}(a q)+2 \mathrm{OH}^{-}(a q)
$$

(states not required, allow $\rightleftharpoons)$
(ii) Write the expression for $K_{\mathrm{s}}\left(\mathrm{Fe}(\mathrm{OH})_{2}\right)$.

$$
K_{\mathrm{s}}=\left[\mathrm{Fe}^{2+}\right]\left[\mathrm{OH}^{-}\right]^{2}
$$

Let s be the solubility: $\left[\mathrm{Fe}^{2+}\right]=s$ $\left[\mathrm{OH}^{-}\right]=2 s$ $K_{\mathrm{s}}=s \times(2 s)^{2}$

$$
4.10 \times 10^{-15}=4 s^{3} \quad s=1.01 \times 10^{-5} \mathrm{~mol} \mathrm{~L}^{-1}
$$

$$
\text { Solubility of } \mathrm{Fe}(\mathrm{OH})_{2}(s)=1.01 \times 10^{-5} \mathrm{~mol} \mathrm{~L}^{-1}
$$

2014 Exam

QUESTION TWO

A flask contains a saturated solution of PbCl_{2} in the presence of undissolved PbCl_{2}.
(a) (i) Write the equation for the dissolving equilibrium in a saturated solution of PbCl_{2}.

$$
\mathrm{PbCl}_{2}(s) \rightleftharpoons \mathrm{Pb}^{2+}(a q)+2 \mathrm{Cl}^{-}(a q)
$$

(ii) Write the expression for $K_{\mathrm{s}}\left(\mathrm{PbCl}_{2}\right)$.

$$
\begin{array}{lll}
\left.K_{\mathrm{s}}=\left[\mathrm{Pb}^{2+}\right]\left[\mathrm{Cl}^{-}\right]^{2+}\right]=x & {\left[\mathrm{Cl}^{-}\right]=2 x} \\
& K_{\mathrm{s}}=4 x^{3} & \\
& x=\sqrt[3]{\frac{K_{\mathrm{s}}}{4}} & \left.\left[\mathrm{~Pb}^{2+}\right]=1.62 \times 10^{-2} \mathrm{~mol} \mathrm{~L}^{-1}\right]=3.24 \times 10^{-2} \mathrm{~mol} \mathrm{~L}^{-1}
\end{array}
$$

(iii) Calculate the solubility (in $\mathrm{mol} \mathrm{L}^{-1}$) of le

$$
\left.\begin{array}{rl}
\begin{array}{rl}
{\left[\mathrm{Pb}^{2+}\right] \text { and }\left[\mathrm{Cl}^{-}\right] \text {in the solution. }}
\end{array} & =\sqrt[3]{\frac{1.70 \times 10^{-5}}{4}} \\
K_{\mathrm{s}}\left(\mathrm{PbCl}_{2}\right)=1.70 \times 10^{-5} \text { at } 25^{\circ} \mathrm{C}
\end{array}\right)
$$

Do now:

(a) Write the equation for PbBr_{2} dissolving in water
(b) Write an expression for the solubility product of PbBr_{2} dissolving in water
(c) If the solubility of PbBr_{2} in water at room temperature is 2.65 x 10^{-2} mol. L^{-1} what is the concentration of Pb^{2+} and Br^{-}in solution?
(d) How would you calculate the solubility of PbBr_{2} if $\mathrm{K}_{\mathrm{s}}=7.62 \times 10^{-6}$ at $0^{\circ} \mathrm{C}$?

Do now:

a) Write the equation for CuCO_{3} dissolving and the K_{s} expression.
b) If $x=$ solubility, substitute in to the K_{s} expression to solve for x

$$
\begin{aligned}
& \mathrm{CuCO}_{3(s)} \rightarrow \mathrm{Cu}^{2+}{ }_{(\text {aq })}+\mathrm{CO}_{3}{ }^{2-}{ }_{\text {(aq) }} \quad \mathrm{K}_{\mathrm{s}}=\left[\mathrm{Cu}^{2+}\right]\left[\mathrm{CO}_{3}{ }^{2-}\right] \\
& \mathrm{K}_{\mathrm{s}}=\mathrm{x}^{2}
\end{aligned}
$$

AB

c) Write the equation for $\mathrm{Ag}_{2} \mathrm{CO}_{3}$ dissolving and the K_{s} expression.
d) If $x=$ solubility, substitute into the K_{s} expression to solve for x

$$
\begin{array}{ll}
\mathrm{Ag}_{2} \mathrm{CO}_{3(\mathrm{~s})} \rightarrow 2 \mathrm{Ag}_{(a \mathrm{aq})}^{+}+\mathrm{CO}_{3}^{2^{-}-(\mathrm{aq})} & \mathrm{K}_{\mathrm{s}}=\left[\mathrm{Ag}^{+}\right]^{2}\left[\mathrm{CO}_{3}^{2-}\right] \\
& \mathrm{K}_{\mathrm{s}}=4 x^{3}
\end{array} \quad \mathbf{A}_{\mathbf{2}} \mathbf{B}
$$

e) Write the equation for Cul_{2} dissolving and the K_{s} expression.
f) If $x=$ solubility, substitute into the K_{s} expression to solve for x

$$
\begin{array}{ll}
\mathrm{CuI}_{2(\mathrm{~s})} \rightarrow \mathrm{Cu}_{(\mathrm{aq})}^{2+}+2 \mathrm{I}_{(\mathrm{aq})}^{-} & \mathrm{K}_{\mathrm{s}}
\end{array}=\left[\mathrm{Cu}^{2+}\right]\left[\mathrm{I}^{-}\right]^{2},
$$

