Do now:

The solubility of Ag₂O in pure water is 0.00108 mol.L⁻¹, calculate the solubility constant, K_s.

 $Ag_{2}O_{(s)} \xrightarrow{2} 2 Ag^{+}_{(aq)} + O^{2-}_{(aq)} \qquad K_{s} = [Ag^{+}]^{2} [O^{2-}]$ $[O^{2-}] = 0.00108 \text{ mol.L}^{-1}$ $[Ag^{+}] = 2 \times 0.00108 \text{ mol.L}^{-1} = 0.00216 \text{ mol.L}^{-1} \qquad K_{s} = 0.00216^{2} \times 0.00108$ $= 5.04 \times 10^{-9}$

We can use K_s values to predict if a solution will form a precipitate or what concentration of an ion is needed to form a precipitate.

 K_s is for **saturated** solutions in **equilibrium**, but the same expression can be used to calculate the ionic product (IP) of any solution.

K _s (AgCl)	= [Ag ⁺][Cl ⁻]	saturated solution
IP	= [Ag⁺][Cl⁻]	for any solution

If the IP is greater than K_s a precipitate will form.

If solid sodium chloride is added to a 0.01 mol.L⁻¹ solution of AgNO₃ solution what is the minimum concentration of Cl⁻ needed to give a precipitate of AgCl? $K_s(AgCl) = 2 \times 10^{-10}$.

$$AgCl_{(s)} \rightarrow Ag^{+}_{(aq)} + Cl^{-}_{(aq)} \qquad \qquad K_{s} = [Ag^{+}][Cl^{-}]$$

What information do we have?

[Ag⁺]

 $[Ag^+] = 0.01 \text{ mol.}L^{-1} \quad [CI^-] = ? \qquad K_s = 2 \times 10^{-10}$ If IP > K_s then precipitation will occur. $[CI^-] > K_s \qquad [CI^-] > 2 \times 10^{-10} \qquad [CI^-] > 2 \times 10^{-8} \text{ mol.}L^{-1}$

0.01

If solid copper sulfate is added to a 0.025 mol.L⁻¹ solution of sodium carbonate solution what is the maximum amount of Cu²⁺ that can be added to the sodium carbonate solution so a precipitate of CuCO₃ will not form? $K_s(CuCO_3) = 7.8 \times 10^{-9}$.

Workbook pg 198 Q1

Will a precipitate form when 75 mL of 4.0 x 10^{-3} mol.L⁻¹ NaCl solution and 25 mL of 6.0 x 10^{-5} mol.L⁻¹ AgNO₃ solution are mixed? K_s(AgCl) = 1.8 x 10^{-10} .

 $AgCl_{(s)} \rightarrow Ag^{+}_{(aq)} + Cl^{-}_{(aq)}$ $K_{s} = [Ag^{+}][Cl^{-}] = 1.8 \times 10^{-10}$

What do we know? What should we calculate?

Calculate IP with [Ag⁺] and [Cl⁻]

Remember we have mixed two solutions together. Total volume is now 100 mL.

 $IP = 1.5 \times 10^{-5} \times 3.0 \times 10^{-3} = 4.5 \times 10^{-8}$ Is this bigger than K_s? YES! Precipitate will form.

10.0 mL of 0.001 mol.L⁻¹ solution of CaCl₂ was mixed with 10.0 mL of 0.001 mol.L⁻¹ solution of Na₂SO₄. Will a precipitate form of calcium sulfate form? $K_s(CaSO_4) = 2 \times 10^{-5}$.

Workbook pg 199 Q2 Workbook pg 200 Q5

(c) (i) Determine whether a precipitate of iron(III) hydroxide, Fe(OH)₃, will form when Fe(NO₃)₃ is dissolved in water. [Fe(NO₃)₃] = 1.05 × 10⁻⁴ mol L⁻¹. Assume the pH of the water is 7.
K_s(Fe(OH)₃) = 2.00 × 10⁻³⁹

What do we know? $[Fe^{3+}] = 1.05 \times 10^{-4} \text{ mol.L}^{-1}$ $[OH^{-}] = 1.00 \times 10^{-7} \text{ mol.L}^{-1}$ $Fe(OH)_3 \rightarrow Fe^{3+} + 3 \text{ OH}^{-}$ $K_s = [Fe^{3+}] [OH^{-}]^3$ $IP = 1.05 \times 10^{-4} \times (1.00 \times 10^{-7})^3$ $IP > K_s$ $= 1.05 \times 10^{-25}$ So precipitation will occur

(ii) Discuss the effect of decreasing the pH of the water on the solubility of Fe(OH)₃.

Assessment schedule

(c) (i)	$Fe(OH)_3(s) \rightleftharpoons Fe^{3+}(aq) + 3OH^{-}(aq)$	
	Ion Product (IP) = $[Fe^{3+}][OH^-]^3$	
	At pH 7, $[OH^-] = 1 \times 10^{-7} \text{ mol } L^{-1}$ IP = $[1.05 \times 10^{-4}] [1 \times 10^{-7}]^3 = 1.05 \times 10^{-25}$	
	Since IP > K_s , Fe(OH) ₃ will form a precipitate	

For A

Either:

Correct IP expression

OR

Compares IP and K_s to make a valid conclusion.

For M

Method uses correct IP expression but has one calculation error AND Compares IP and K₅ to make a valid conclusion (3 significant figures).

For E

 Answer correct with supporting calculation (3 significant figures).

(ii) When the pH is decreased, $[H_3O^+]$ will increase. The H_3O^+ will react with the OH⁻ and therefore remove them from the equilibrium. This will cause the reaction to replace some of the removed OH⁻. As a result more $Fe(OH)_3$ will dissolve, so decreasing the pH will increase the solubility of $Fe(OH)_3$.

For A

 Either: Writes an equilibrium expression AND identifies direction it shifts in.

OR

States [OH⁻] decreases / [H₃O⁺] increases causing Fe(OH)₃ to be more soluble.

For M

• Either:

States the change in [OH⁻], its impact on the equilibrium position and therefore more Fe(OH)₃ dissolves.

OR

Discussion of effect of decreasing pH on Fe(OH)₃ dissolving in terms of [H₃O⁺] / [OH⁻] changing.

For E

 Complete discussion of effect of decreasing pH on Fe(OH)₃ solubility, including role of H₃O⁺ (reacting with OH⁻).

2009 Exam Q 2 (b)

QUESTION TWO

Addition of chloride ions to a solution of silver nitrate often results in the formation of a white precipitate of silver chloride (AgCl).

 $AgCl(s) \rightleftharpoons Ag^{+}(aq) + Cl^{-}(aq)$ $K_{s}(AgCl) = 1.56 \times 10^{-10}$

(b) Solid sodium chloride is added to 5.00 L of $0.100 \text{ mol } \text{L}^{-1}$ silver nitrate solution.

Calculate the minimum mass of sodium chloride that would be needed to produce a saturated solution of AgCl. Assume that there is no change in volume when the sodium chloride is added.

 $M(NaCl) = 58.5 \text{ g mol}^{-1}$

2009 Exam Q 2 (b)

(b) A sample of seawater has a chloride ion concentration of $0.440 \text{ mol } L^{-1}$.

Determine whether a precipitate of lead(II) chloride will form when a 2.00 g sample of lead(II) nitrate is added to 500 mL of the seawater.

 $K_{\rm s}({\rm PbCl}_2) = 1.70 \times 10^{-5}$ $M({\rm Pb}({\rm NO}_3)_2) = 331 \text{ g mol}^{-1}$

$$n(Pb(NO_3)_2) = \frac{2.00 \text{ g}}{331 \text{ g mol}^{-1}} \qquad \therefore [Pb^{2^+}] = 6.04 \times 10^{-3} \text{ mol} / 0.500L$$
$$= 1.21 \times 10^{-2} \text{ mol} L^{-1}$$
$$= 6.04 \times 10^{-3} \text{ mol}$$

 $Q = (1.21 \times 10^{-2}) \text{ x} (0.440)^2$ As $Q > K_s$, a precipitate will form. = 2.34×10^{-3}