pH calculations for weak acids

How can we calculate the pH of a weak acid? How do we know $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$if the solution has not fully dissociated?

We use a new constant! ! K_{a}

$$
\mathrm{HA}+\mathrm{H}_{2} \mathrm{O} \leftrightharpoons \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{A}^{-} \quad \mathrm{K}_{\mathrm{a}}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]}
$$

The higher the K_{a} the stronger the acid.
$\mathrm{pK}=-\log _{10} \mathrm{~K}_{\mathrm{a}} \quad \mathrm{K}_{\mathrm{a}}=10^{\text {-pKa }}$
The lower the pK_{a} the stronger the acid.
Workbook pg 221-223

2014 Exam Q1 b

(b) Hypochlorous acid has a $\mathrm{p} K_{\mathrm{a}}$ of 7.53 . Another weak acid, hydrofluoric acid, HF , has a $\mathrm{p} K_{\mathrm{a}}$ of 3.17.

A $0.100 \mathrm{~mol} \mathrm{~L}^{-1}$ solution of each acid was prepared by dissolving it in water.
Compare the pHs of these two solutions.
No calculations are necessary.
(b) Hydroflnoric acid is a stronger acid/more acidio/dissociates more because it has a smaller $\mathrm{p} K_{\mathrm{i}}$ (larger K_{i}) than hypochlorous acid.
So HF will therefore have a higher $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$. $\left.\mathrm{As}^{[} \mathrm{H}_{3} \mathrm{O}^{+}\right]$increases, the pH decreases, so HF will have a lower pH than HOCl .
$(\mathrm{pHHF}=2.09, \mathrm{HOCl}=4.27)$

pH calculations for weak acids

We make two assumptions to calculate the pH of a weak acid.

1. $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\left[\mathrm{A}^{-}\right]$(no $\mathrm{H}_{3} \mathrm{O}^{+}$from the water)
2. $[\mathrm{HA}]=$ starting concentration of acid (no dissociation at all)
$\mathrm{HA}+\mathrm{H}_{2} \mathrm{O} \leftrightharpoons \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{A}^{-} \quad \mathrm{K}_{\mathrm{a}}(\mathrm{HA})=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]} \quad \mathrm{K}_{\mathrm{a}}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]^{2}}{[\mathrm{HA}]}$
For example: Find the pH of a $1.50 \mathrm{~mol}^{\mathrm{L}} \mathrm{L}^{-1}$ solution of HOBr .
$\mathrm{K}_{\mathrm{a}}(\mathrm{HOBr})=2.40 \times 10^{-9}$.
$\mathrm{K}_{\mathrm{a}}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]^{2}}{[\mathrm{HOBr}]} \quad 2.4 \times 10^{-9}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]^{2}}{1.5}$

$$
\begin{aligned}
& {\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\sqrt{\left(2.4 \times 10^{-9}\right) \times 1.5}} \\
& {\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=6 \times 10^{-5}}
\end{aligned}
$$

$\mathrm{HOBr}+\mathrm{H}_{2} \mathrm{O} \leftrightharpoons \mathrm{OBr}^{-}+\mathrm{H}_{3} \mathrm{O}^{+}$

$$
\begin{aligned}
& \mathrm{pH}=-\log _{10}\left(6 \times 10^{-5}\right) \\
& \mathrm{pH}=4.22
\end{aligned}
$$

pH calculations for weak acids

Find the pH of $0.0500 \mathrm{~mol}^{\mathrm{L}} \mathrm{L}^{-1} \mathrm{HF} . \mathrm{K}_{\mathrm{a}}(\mathrm{HF})=7.2 \times 10^{-4}$

Find the pH of $0.750 \mathrm{~mol} . \mathrm{L}^{-1} \mathrm{CH}_{3} \mathrm{COOH} . \mathrm{pK}_{\mathrm{a}}\left(\mathrm{CH}_{3} \mathrm{COOH}\right)=4.75$

The pH of a solution of acetic acid is 3.42. What is the concentration of the acid solution? $\mathrm{K}_{\mathrm{a}}\left(\mathrm{CH}_{3} \mathrm{COOH}\right)=1.78 \times 10^{-5}$

Workbook pg 231

2013 Exam Q3

Sometimes part of a bigger question on buffers/titrations (last topics)

QUESTION THREE

20.0 mL of $0.0896 \mathrm{~mol} \mathrm{~L}^{-1}$ ethanoic acid is titrated with $0.100 \mathrm{~mol} \mathrm{~L}^{-1}$ sodium hydroxide.

$$
\mathrm{p} K_{\mathrm{a}}\left(\mathrm{CH}_{3} \mathrm{COOH}\right)=4.76
$$

(a) Calculate the pH of the ethanoic acid before any NaOH is added.

THREE
(a)

$$
\begin{aligned}
& K_{\mathrm{a}}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right]}{\left[\mathrm{CH}_{3} \mathrm{COOH}\right]} \\
& \begin{aligned}
{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right] } & =\sqrt{1.74 \times 10^{-5} \times 0.0896} \mathrm{~mol} \mathrm{~L}^{-1} \\
& =1.25 \times 10^{-3} \mathrm{~mol} \mathrm{~L}^{-1}
\end{aligned}
\end{aligned}
$$

$$
\mathrm{pH}=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=2.90
$$

Achievement	Achievement with Merit
- Conrect process.	- Conrect pH.

pH calculations for weak bases

Same process as weak acids - but use K_{b}
For $\mathrm{A}^{-}+\mathrm{H}_{2} \mathrm{O} \leftrightharpoons \mathrm{HA}+\mathrm{OH}^{-} \quad \mathrm{K}_{\mathrm{b}}=\frac{[\mathrm{HA}]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{A}^{-}\right]}$
$K_{w}=K_{a} \times K_{b}$ if question gives you K_{a} of conjugate acid
Steps:
find K_{b} from K_{a} and K_{w}
find $\left[\mathrm{OH}^{-}\right]$from K_{b}
then calculate $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right.$] then pH
OR
calculate pOH and convert to pH .

pH calculations for weak bases

For example: Find the pH of a $0.53 \mathrm{~mol}^{\mathrm{m}} \mathrm{L}^{-1}$ solution of sodium ethanoate $\left(\mathrm{NaCH}_{3} \mathrm{COO}\right)$.
$\mathrm{K}_{\mathrm{a}}\left(\mathrm{CH}_{3} \mathrm{COOH}\right)=1.74 \times 10^{-5}$.
$\mathrm{NaCH}_{3} \mathrm{COO} \rightarrow \mathrm{Na}^{+}+\mathrm{CH}_{3} \mathrm{COO}^{-}$
$\mathrm{CH}_{3} \mathrm{COO}^{-}+\mathrm{H}_{2} \mathrm{O} \leftrightharpoons \mathrm{CH}_{3} \mathrm{COOH}+\mathrm{OH}^{-}$
$\mathrm{K}_{\mathrm{b}}=\frac{\mathrm{K}_{\mathrm{w}}}{\mathrm{K}_{\mathrm{a}}}=\frac{10^{-14}}{1.74 \times 10^{-5}}$
$K_{b}=5.75 \times 10^{-10}$

$$
\begin{aligned}
& \mathrm{pH}=14-\mathrm{pOH} \\
& \mathrm{pH}=9.24
\end{aligned}
$$

$$
\left[\mathrm{OH}^{-}\right]=\sqrt{\left(5.75 \times 10^{-10}\right) \times 0.53}
$$

$$
\left[\mathrm{OH}^{-}\right]=1.75 \times 10^{-5}
$$

Workbook pg 232
Workbook pg 234-235 if finished

$$
5.75 \times 10^{-10}=\frac{\left[\mathrm{OH}^{-}\right]^{2}}{0.53}
$$

$$
\mathrm{pOH}=-\log _{10}\left(1.75 \times 10^{-5}\right)
$$

$$
\mathrm{pOH}=4.76
$$

2012 Exam Q3 a

QUESTION THREE

(a) Calculate the pH of $0.150 \mathrm{~mol} \mathrm{~L}^{-1}$ aqueous ammonia, NH_{3}.

$$
\mathrm{p} K_{\mathrm{a}}\left(\mathrm{NH}_{4}^{+}\right)=9.24
$$

Concentration calculations from pH

You can also be asked to calculate concentration if given the pH .
Again $\mathrm{K}_{\mathrm{a}}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]}$ and $\mathrm{K}_{\mathrm{a}}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]^{2}}{[\mathrm{HA}]}$
Rearranging gives

$$
[\mathrm{HA}]=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]^{2}}{\left[\mathrm{~K}_{\mathrm{a}}\right]}
$$

Can calculate from pH
For example: A solution of glycolic acid (HG) has a pH of 2.00. Show by calculation that the concentration is $0.675 \mathrm{~mol}_{\mathrm{m}} \mathrm{L}^{-1}$

If you are asked to do this for a base you need to calculate K_{b} from K_{a} and $\left[\mathrm{OH}^{-}\right]$from pH then carry on as normal using K_{b} expression.

2011 Exam Q 1 c

(c) A solution prepared by dissolving hydrogen fluoride in water has a pH of 2.34.

Calculate the concentration of the hydrogen fluoride in the solution.

$$
\mathrm{p} K_{\mathrm{a}}(\mathrm{HF})=3.17
$$

2014 Exam Q 3 b

A titration was carried out by adding hydrobromic acid, HBr , to 20.0 mL of aqueous methylamine, $\mathrm{CH}_{3} \mathrm{NH}_{2}$, solution.
The equation for the reaction is:

$$
\begin{aligned}
& \mathrm{CH}_{3} \mathrm{NH}_{2}+\mathrm{HBr} \rightarrow \mathrm{CH}_{3} \mathrm{NH}_{3}^{+}+\mathrm{Br}^{-} \\
& K_{\mathrm{a}}\left(\mathrm{CH}_{3} \mathrm{NH}_{3}^{+}\right)=2.29 \times 10^{-11}
\end{aligned}
$$

(b) The aqueous methylamine, $\mathrm{CH}_{3} \mathrm{NH}_{2}$, solution has a pH of 11.8 before any HBr is added.

Show by calculation that the concentration of this solution is $0.0912 \mathrm{~mol} \mathrm{~L}^{-1}$.

$$
\left.\begin{array}{l}
{\left[\begin{array}{c}
{\left[\mathrm{OH}^{-}\right]=} \\
{\left[\mathrm{H}_{\mathrm{w}} \mathrm{O}^{+}\right]}
\end{array}=\frac{10^{-14}}{10^{-11.3}}\right.} \\
=6.31 \times 10^{-3} \mathrm{~mol} \mathrm{~L}^{-1}
\end{array} \begin{array}{c}
\mathrm{K}=\frac{\left[\mathrm{OH}^{-}\right]^{2}}{\left[\mathrm{CH}_{3} \mathrm{NH}_{2}\right]}
\end{array}\right] .
$$

Achievement with Excellence

- Calculates $\left[\mathrm{OH}^{-}\right] /\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$/ K_{b}
- Uses suitable process with more than one error.
OR
Rearranges $K_{\mathrm{b}} / K_{\mathrm{a}}$ expression so $\left[\mathrm{CH}_{3} \mathrm{NH}_{2}\right]$ is the subject.

