pH calculations for weak acids

How can we calculate the pH of a weak acid? How do we know $[H_3O^+]$ if the solution has not fully dissociated?

We use a new constant!! K_a

$$HA + H_2O \iff H_3O^+ + A^- \qquad K_a = \frac{[H_3O^+][A^-]}{[HA]}$$

The higher the K_a the stronger the acid.

 $pK_a = -log_{10}K_a$ $K_a = 10^{-pKa}$

The lower the pK_a the stronger the acid.

Workbook pg 221 – 223

2014 Exam Q1 b

(b) Hypochlorous acid has a pK_a of 7.53. Another weak acid, hydrofluoric acid, HF, has a pK_a of 3.17.

A 0.100 mol L^{-1} solution of each acid was prepared by dissolving it in water.

Compare the pHs of these two solutions.

No calculations are necessary.

(b) Hydrofluoric acid is a stronger acid/more acidic/dissociates more because it has a smaller pK_s (larger K_s) than hypochlorous acid. So HF will therefore have a higher [H₃O⁺]. As [H₃O⁺] increases, the pH decreases, so HF will have a lower pH than HOC1. (pH HF = 2.09, HOC1 = 4.27)

pH calculations for weak acids

We make two assumptions to calculate the pH of a weak acid. 1. $[H_3O^+] = [A^-]$ (no H_3O^+ from the water)

2. [HA] = starting concentration of acid (no dissociation at all)

$$HA + H_2O \implies H_3O^+ + A^- \qquad K_a(HA) = \underbrace{[H_3O^+][A^-]}_{[HA]} \qquad K_a = \underbrace{[H_3O^+]^2}_{[HA]}$$

For example: Find the pH of a 1.50 mol.L⁻¹ solution of HOBr. $K_a(HOBr) = 2.40 \times 10^{-9}$.

$$K_{a} = \frac{[H_{3}O^{+}]^{2}}{[HOBr]} \qquad 2.4 \times 10^{-9} = \frac{[H_{3}O^{+}]^{2}}{1.5} \qquad [H_{3}O^{+}] = \sqrt{(2.4 \times 10^{-9}) \times 1.5}$$
$$[H_{3}O^{+}] = 6 \times 10^{-5}$$
$$HOBr + H_{2}O \implies OBr^{-} + H_{3}O^{+} \qquad pH = -\log_{10}(6 \times 10^{-5})$$
$$pH = 4.22$$

pH calculations for weak acids

Find the pH of 0.0500 mol.L⁻¹ HF. $K_a(HF) = 7.2 \times 10^{-4}$

Find the pH of 0.750 mol.L⁻¹ CH₃COOH. $pK_a(CH_3COOH) = 4.75$

The pH of a solution of acetic acid is 3.42. What is the concentration of the acid solution? $K_a(CH_3COOH) = 1.78 \times 10^{-5}$

Workbook pg 231

2013 Exam Q3

Sometimes part of a bigger question on buffers/titrations (last topics)

20.0 mL of 0.0896 mol L⁻¹ ethanoic acid is titrated with 0.100 mol L⁻¹ sodium hydroxide. pK_a (CH₃COOH) = 4.76

(a) Calculate the pH of the ethanoic acid before any NaOH is added.

pH calculations for weak bases

Same process as weak acids – but use K_b

For $A^- + H_2O$ \implies HA + OH⁻ $K_b = [HA][OH^-]$ [A⁻]

 $K_w = K_a \times K_b$ if question gives you K_a of conjugate acid

Steps: find K_b from K_a and K_w find $[OH^-]$ from K_b then calculate $[H_3O^+]$ then pH OR calculate pOH and convert to pH.

pH calculations for weak bases

For example: Find the pH of a 0.53 mol.L⁻¹ solution of sodium ethanoate (NaCH₃COO). $K_a(CH_3COOH) = 1.74 \times 10^{-5}$.

 $NaCH_{3}COO \rightarrow Na^{+} + CH_{3}COO^{-}$ $K_{b} = [OH^{-}]^{2}$ $CH_{3}COO^{-} + H_{2}O \implies CH_{3}COOH + OH^{-}$ $[CH_3COO^-]$ $K_{b} = \frac{K_{w}}{K_{a}} = \frac{10^{-14}}{1.74 \times 10^{-5}}$ $5.75 \times 10^{-10} = [OH^{-}]^{2}$ $K_{\rm h} = 5.75 \times 10^{-10}$ 0.53 $[OH^{-}] = \sqrt{(5.75 \times 10^{-10}) \times 0.53}$ pH = 14 - pOHpH = 9.24 $[OH^{-}] = 1.75 \times 10^{-5}$ $pOH = -\log_{10}(1.75 \times 10^{-5})$ Workbook pg 232 pOH = 4.76

Workbook pg 234 – 235 if finished

2012 Exam Q3 a

QUESTION THREE

(a) Calculate the pH of 0.150 mol L^{-1} aqueous ammonia, NH_3 .

 $pK_{a}(NH_{4}^{+}) = 9.24$

Concentration calculations from pH

You can also be asked to calculate concentration if given the pH.

For example: A solution of glycolic acid (HG) has a pH of 2.00. Show by calculation that the concentration is 0.675 mol.L⁻¹

If you are asked to do this for a base you need to calculate K_b from K_a and $[OH^-]$ from pH then carry on as normal using K_b expression.

2011 Exam Q 1 c

(c) A solution prepared by dissolving hydrogen fluoride in water has a pH of 2.34.

Calculate the concentration of the hydrogen fluoride in the solution.

 $pK_{a}(HF) = 3.17$

2014 Exam Q 3 b

A titration was carried out by adding hydrobromic acid, HBr, to 20.0 mL of aqueous methylamine, CH_3NH_2 , solution.

The equation for the reaction is:

 $CH_3NH_2 + HBr \rightarrow CH_3NH_3^+ + Br^ K_a(CH_3NH_3^+) = 2.29 \times 10^{-11}$

(b) The aqueous methylamine, CH_3NH_2 , solution has a pH of 11.8 before any HBr is added.

Show by calculation that the concentration of this solution is 0.0912 mo			ol L ⁻¹ . [OH ⁻] = $\frac{K_w}{[H_3O^+]} = \frac{10^{-14}}{10^{-11.8}}$
Achievement	Achievement with Merit	Achievement with Excellence	$= 6.31 \times 10^{-3} \text{ mol } L^{-1}$ [OH ⁻] ²
 Calculates [OH⁻] / [H₃O⁺] / K_b Uses suitable process with more than one error. OR Rearranges K_b / K_a expression so [CH₃NH₂] is the subject. 	 Correct method but an error in the calculation. 	• Correct answer with a clear method.	$A_{b} = \frac{1}{[CH_{3}NH_{2}]}$ $4.37 \times 10^{-4} = \frac{(6.31 \times 10^{-3})^{2}}{[CH_{3}NH_{2}]}$ $[CH_{3}NH_{2}] = \frac{(6.31 \times 10^{-3})^{2}}{4.37 \times 10^{-4}}$ $[CH_{3}NH_{2}] = 0.0912 \text{ mol } L^{-1}$