Structures, Shapes and Polarity of Molecules

Level 2 recap:

- Polar and non polar bonds
- Lewis diagrams
- Lone pairs
- Shapes
- Polarity

Do now: Brainstorm what you know/remember about these L2 concepts...

Bond polarity

Differences in electronegativity between atoms tell us about the type of bonding between atoms
workbook
pg 23
There are 3 types of bonding between atoms

Ionic
Difference in
electronegativity > 2.1

Polar covalent
Difference in electronegativity 0.5-2.0 electronegativity < 0.5

Bonding between atoms is a continuum - each polar covalent bond has characteristics of ionic and non-polar covalent bonding

Lewis Structures

We are only interested in valence electrons
Atoms share a pair of electrons to form a covalent bond Single bonds - one pair, double bonds - two pairs, triple bonds three pairs

1. Place atoms around the central atom
2. Count the total number of valence electrons
3. Place 2 electrons between each pair of atoms
4. Place remaining electrons around outside atoms so they have a full valence shell
5. Place remaining electrons around central atom so it has a full valence shell
6. Check each atom has a full valence shell
7. If the central atom does not have a full valence shell move pairs of electrons to form double and triple bonds

Do now:

Draw Lewis diagrams for the following compounds

What are the shapes of these compounds?
Are these compounds polar or non-polar?

Lewis Structures

We can draw Lewis structures for ions
A + charge means we have 1 less valence electron in the Lewis structure
A - charge means we have 1 more valence electron in the Lewis
structure
We need to draw the structure with brackets and indicate the charge eg $\mathrm{NH}_{4}{ }^{+}$

Lewis Structures

Some atoms do not obey the octet rule - Be, B Be requires only 4 electrons in its valence shell to be stable B requires only 6 electrons in its valence shell to be stable eg $\mathrm{BeCl}_{2}, \mathrm{BH}_{3}$

This year we learn that some atoms can accommodate more than 8 electrons in their valence shells and still be stable. Follow the same rules for drawing Lewis diagrams, make sure you count the number of electrons you have to work with.

Lewis Structures

$\mathrm{P}, \mathrm{S}, \mathrm{As}, \mathrm{Cl}, \mathrm{I}, \mathrm{Br}, \mathrm{Xe}$ can all accommodate more than 8 electrons in their outer shell. This expanded valence shell can be 10 or 12 electrons.

It is important to count how many electrons you need to include in your valence shell other wise you will miss lone pairs of electrons on the central atom.
eg PCl_{5}
BrF_{5}

$$
\mathrm{I}_{3}^{-}
$$

XeF_{4}
SF_{6}

$$
\mathrm{SF}_{4} \quad \mathrm{ClF}_{3}
$$

From last year:

Bonding regions	Non- bonding regions	Shape	Bond angle	Example
4	0	tetrahedral trigonal pyramid	109°	methane $\left(\mathrm{CH}_{4}\right)$
3	1	$109^{\circ}\left(107^{\circ}\right)$	ammonia $\left(\mathrm{NH}_{3}\right)$	
2	2	bent trigonal planar	$<109^{\circ}\left(105^{\circ}\right)$	water $\left(\mathrm{H}_{2} \mathrm{O}\right)$
3	0	bent	$<120^{\circ}$	BCl_{3}
2	1	linear	$<180^{\circ}$	SO_{2}
2	0	CO_{2}		

Do now:

Draw Lewis diagrams and state the shape for the following compounds

SCl_{2}

4 regions of charge
2 bonding,
2 non-bonding bent

PCl_{3}

4 regions of charge
3 bonding,
1 non-bonding
trigonal pyramid

5 regions of charge
5 bonding,
0 non-bonding trigonal bipyramid

Shapes

New this year:
6 regions of charge around the central atom

Bonding regions	Non- bonding regions	Shape	Bond angle	Example
6	0	octahedral	90°	$\mathrm{SF}_{6}, \mathrm{PCl}_{6}^{-}, \mathrm{SiF}_{6}^{-}$
5	1	square pyramidal	90°	BrF_{5}
4	2	square planar	90°	$\mathrm{XeF}_{4}, \mathrm{BrF}_{4}^{-}$, ICl_{4}^{--}

Shapes

workbook
pg 34 and 35

New this year:
5 regions of charge around the central atom

Bonding regions	Nonbonding regions	Shape	Bond angle	Example
5	0	trigonal bipyramid	$120^{\circ}, 90^{\circ}$	$\mathrm{PCl}_{5}, \mathrm{AsF}_{5}$
4	1	seesaw	$180^{\circ}, 120^{\circ}, 90^{\circ}$	SF_{4}
3	2	T-shaped	90°	$\mathrm{BrF}_{3}, \mathrm{ClF}_{3}$
2	3	linear	180°	$\mathrm{XeF}_{2}, \mathrm{I}_{3}{ }^{-}$
Triagonal Bipyramidal		$\prod_{\text {Seesaw }}$		

Shapes

Draw Lewis diagrams and state the shape for the following compounds
SF_{4}

5 regions of charge
4 bonding,
1 non-bonding
see-saw
ICl_{4}^{-}

6 regions of charge
4 bonding,
2 non-bonding
square planar

6 regions of charge 5 bonding, 1 non-bonding square pyramid
XeF_{2}
5 regions of charge
2 bonding,
3 non-bonding linear

ClF_{3}
5 regions of charge
3 bonding,
2 non-bonding
T-shaped

Polarity

Non-polar molecules

- Same atoms bonded together
- Symmetrical around each bond (bonds can be polar)
- No lone pair (square planar molecules are an exception)
- No net dipole (bond dipoles cancel out)

Polar molecules

- Different atoms bonded together (polar bonds)
- Unsymmetrical around each bond
- Lone pair(s)
- Net dipole (bond dipoles do not cancel out)

Polarity

Decide if these shapes will form compounds that are polar or non-polar and why

Octahedral
non- polar
Trigonal bipyramid non- polar

Square pyramidal
polar
Seesaw
polar

Square
planar non- polar

T-shaped
polar

2013 Exam Q 1 (c) (i)

(c) (i) Complete the following table.

Molecule	BrF_{3}	PCl_{6}^{-}
Lewis diagram		
Name of shape		

2013 Exam Q1 (c) (ii)

(ii) The Lewis diagrams for SF_{4} and XeF_{4} are shown below.

Compare and contrast the polarities and shapes of these two molecules.
USF4 is the see saw shape, whereas
$X_{4} F_{4}$ is the square planar shape.
On your worksheet you have an A, M and E exemplar. Compare the exemplars and see if you can write bullet points on what needs to be covered in an Excellence response.

Do now:

Answer the following exam question
(ii) The Lewis structures for the two molecules PCl_{3} and PCl_{5} are shown below. Compare and contrast the shapes and the polarities of these two molecules.
PCl_{3}

2013 Practise exam Q 1 (c) (ii)

Key points in your answer:
For Achieved: (2 of these)

- Both shapes OR
- Both polarities correct OR
- States electronegativity of P is greater than Cl OR
- States $\mathrm{P}-\mathrm{Cl}$ bond is polar OR
- States symmetry of both molecules

For Merit:

- Makes links between TWO of: electronegativity, dipole moment, symmetry
For Excellence:
- Makes links between THREE of: electronegativity, dipole moment, symmetry

Both PCl_{3} and PCl_{5} contain polar bends, beravie (1 is more electronegative than P therefore attracts the bonding electrons closer toward itself, leaving the Cl end of the bond sightly negative and the Pend slightly positive. Howpres PCl_{3} is a polar molecule whilst PCI is a hon polar molecule. $\ln \mathrm{PCl}_{3}$, the cental Pabm has foveas of elation density anu nd it when repel each other as for apart as possible due to KEEPR but as only 3 ane bonded to (I atoms, a torgonal pyramid shape is observed. This shape is asymmetric si the centre of positive charge is not in the name place as the centre of regasture charge, the dipoles do not cancel each other at and the PCl_{3} molecule ${ }^{1} 5$ polar.

POls a non-polar because of indifferent chape. $\ln \mathrm{PCl}$, the antral P atom has 5 areas of elector density around it whee repel each as for apart as possible and as all 5 ane handed t Cl atoms a trigonal bipyramid shape is observed. This is a symmetrical chape st the centre of porituecharge is in the lame place as the centre of neqatore charge, the dipoles canal each other out and the overall PCl_{5} molecule is non-polar Il

