Concentration of species in solution

We need to think about the relative concentrations of species in solution for acids and bases and salts.

For example: KNO_{3}
What species are present in solution excluding water?
$\mathrm{K}^{+}, \mathrm{NO}_{3}{ }^{-}, \mathrm{H}_{3} \mathrm{O}^{+}, \mathrm{OH}^{-}$
$\mathrm{KNO}_{3} \rightarrow \mathrm{~K}^{+}+\mathrm{NO}_{3}^{-}$
$\mathrm{K}^{+}=\mathrm{NO}_{3}^{-}>\mathrm{H}_{3} \mathrm{O}^{+}=\mathrm{OH}^{-}$
For example:
$\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}$
What species are present in solution excluding water?
$\mathrm{Ca}^{2+}, \mathrm{NO}_{3}^{-}, \mathrm{H}_{3} \mathrm{O}^{+}, \mathrm{OH}^{-}$
$\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2} \rightarrow \mathrm{Ca}^{2+}+2 \mathrm{NO}_{3}^{-}$
$\mathrm{NO}_{3}^{-}>\mathrm{Ca}^{2+}>\mathrm{H}_{3} \mathrm{O}^{+}=\mathrm{OH}^{-}$

Concentration of species in solution

Neutral species have the same concentration of $\mathrm{H}_{3} \mathrm{O}^{+}$and OH^{-}in solution (1×10^{-7}). Weak acids and bases have different concentrations of $\mathrm{H}_{3} \mathrm{O}^{+}$and OH^{-}in solution.

For example: HF
What species are present in solution excluding water?

$$
\begin{aligned}
& \mathrm{HF}+\mathrm{H}_{2} \mathrm{O} \leftrightharpoons \mathrm{~F}^{-}+\mathrm{H}_{3} \mathrm{O}^{+} \\
& \mathrm{HF}, \mathrm{~F}^{-}, \mathrm{H}_{3} \mathrm{O}^{+}, \mathrm{OH}^{-}
\end{aligned}
$$

What are the relative concentrations of these species?

$$
\mathrm{HF}>\mathrm{F}^{-}=\mathrm{H}_{3} \mathrm{O}^{+}>\mathrm{OH}^{-}
$$

Try: $\mathrm{CH}_{3} \mathrm{COOH}, \mathrm{CH}_{3} \mathrm{NH}_{2}$

Concentration of species in solution

Acidic and basic salts (conjugate base of a weak acid or the conjugate acid of a weak base) change the ratio of $\mathrm{H}_{3} \mathrm{O}^{+}$and OH^{-}in solution because of their reaction with water after they dissolve in water.

For example: HCOONa

$$
\text { Try: } \mathrm{Na}_{2} \mathrm{CO}_{3}
$$

What species are present in solution excluding water?
$\begin{aligned} \mathrm{HCOONa} & \rightarrow \mathrm{HCOO}^{-}+\mathrm{Na}^{+} \\ & \mathrm{HCOO}^{-}+\mathrm{H}_{2} \mathrm{O} \\ & =\mathrm{HCOOH}+\mathrm{OH}^{-}\end{aligned}$
$\mathrm{HCOO}^{-}, \mathrm{Na}^{+}, \mathrm{OH}^{-}, \mathrm{HCOOH}, \mathrm{H}_{3} \mathrm{O}^{+}$
What are the relative concentrations of these species?

$$
\mathrm{Na}^{+}>\mathrm{HCOO}^{-}>\mathrm{OH}^{-}=\mathrm{HCOOH}>\mathrm{H}_{3} \mathrm{O}^{+}
$$

2012 Exam

(b) For each of the following $0.100 \mathrm{~mol} \mathrm{~L}^{-1}$ solutions, list all species in order of decreasing concentration.

Do not include water.
(i) HCl

$$
\mathrm{H}_{3} \mathrm{O}^{+}=\mathrm{Cl}^{-}>\mathrm{OH}^{-}
$$

(ii) $\mathrm{CH}_{3} \mathrm{NH}_{2}$

$$
\mathrm{CH}_{3} \mathrm{NH}_{2}>\mathrm{OH}^{-}=\mathrm{CH}_{3} \mathrm{NH}_{3}^{+}>\mathrm{H}_{3} \mathrm{O}^{+}
$$

(iii) $\mathrm{NH}_{4} \mathrm{Cl}$

$$
\mathrm{Cl}^{-}>\mathrm{NH}_{4}^{+}>\mathrm{NH}_{3}=\mathrm{H}_{3} \mathrm{O}^{+}>\mathrm{OH}^{-}
$$

2014 Exam Q1 a

QUESTION ONE

When chlorine gas is added to water, the equation for the reaction is:

$$
\mathrm{Cl}_{2}(g)+\mathrm{H}_{2} \mathrm{O}(\ell) \rightleftharpoons \mathrm{HCl}(a q)+\mathrm{HOCl}(a q)
$$

(a) (i) Write an equation for the reaction of the weak acid, hypochlorous acid, HOCl , with water.
(ii) List all the species present when HOCl reacts with water, in order of decreasing concentration.

Order of decreasing concentration:

Justify your order.

2014 Exam Q1 a

	Evidence		
(Achievement	Achievement with Merit	Achievement with Excellence
-	- Equation conrect. OR FOUR species conectly identified. - Recognises HOCl partially dissociates. OR One conrect justification.	- ALL species and order conrect AND partial explanation to support the order of the species.	- ALL species and order conrect AND complete justification.

