Concentration of species in solution

We need to think about the relative concentrations of species in solution for acids and bases and salts.

For example: KNO_3 What species are present in solution excluding water? K^+ , NO_3^- , H_3O^+ , $OH^ KNO_3 \rightarrow K^+ + NO_3^ K^+ = NO_3^- > H_3O^+ = OH^-$

For example: $Ca(NO_3)_2$

What species are present in solution excluding water?

 $Ca^{2+}, NO_3^{-}, H_3O^+, OH^ Ca(NO_3)_2 \rightarrow Ca^{2+} + 2 NO_3^{-}$ $NO_3^{-} > Ca^{2+} > H_3O^+ = OH^-$

Concentration of species in solution

Neutral species have the same concentration of H_3O^+ and OH^- in solution (1 x 10⁻⁷). Weak acids and bases have different concentrations of H_3O^+ and OH^- in solution.

For example: HF What species are present in solution excluding water?

 $HF + H_2O \implies F^- + H_3O^+$

 HF, F^-, H_3O^+, OH^-

What are the relative concentrations of these species? $HF > F^{-} = H_{3}O^{+} > OH^{-}$ Try: $CH_{3}COOH$, $CH_{3}NH_{2}$

Concentration of species in solution

Acidic and basic salts (conjugate base of a weak acid or the conjugate acid of a weak base) change the ratio of H_3O^+ and OH^- in solution because of their reaction with water after they dissolve in water.

Try: Na₂CO₃

For example: HCOONa What species are present in solution excluding water?

HCOONa \rightarrow HCOO⁻ + Na⁺

 $HCOO^{-} + H_2O \implies HCOOH + OH^{-}$

HCOO⁻, Na⁺, OH⁻, HCOOH , H₃O⁺

What are the relative concentrations of these species?

 $Na^+ > HCOO^- > OH^- = HCOOH > H_3O^+$

2012 Exam

(b) For each of the following 0.100 mol L⁻¹ solutions, list all species in order of decreasing concentration.

Do not include water.

(i) HCl

 $H_3O^+ = CI^- > OH^-$

(ii) CH₃NH₂

$$CH_3NH_2 > OH^- = CH_3NH_3^+ > H_3O^+$$

(iii) NH4Cl

 $Cl^- > NH_4^+ > NH_3 = H_3O^+ > OH^-$

2014 Exam Q1 a

QUESTION ONE

When chlorine gas is added to water, the equation for the reaction is:

 $Cl_2(g) + H_2O(\ell) \rightleftharpoons HCl(aq) + HOCl(aq)$

(a) (i) Write an equation for the reaction of the weak acid, hypochlorous acid, HOCl, with water.

(ii) List all the species present when HOCl reacts with water, in order of decreasing concentration.

Order of decreasing concentration:

Justify your order.

2014 Exam Q1 a

Q		Evidence	
(Achievement	Achievement with Merit	Achievement with Excellence
	Equation correct. OR FOUR species correctly identified. Recognises HOCl partially dissociates. OR One correct justification.	 ALL species and order correct AND partial explanation to support the order of the species. 	 ALL species and order correct AND complete justification.