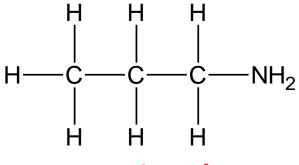


glycine

lysine

Amines

Classification of amines

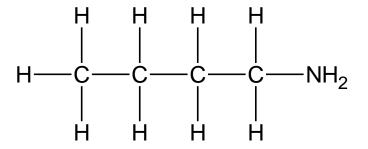

Just like haloalkanes we can classify amines as primary (1°) , secondary (2°) and tertiary (3°) . At level 2 we only look at primary amines, for example ethanamine:

We can name amines in two different ways. The amine can be the suffix (end) or the prefix (start).

The above compound could be named 1-aminoethane or ethanamine.

Naming and drawing amines

Name the following amines using the **<u>suf</u>**fix naming (anamine)



propan-1-amine

hexan-1-amine

Draw the following amines butan-1-amine

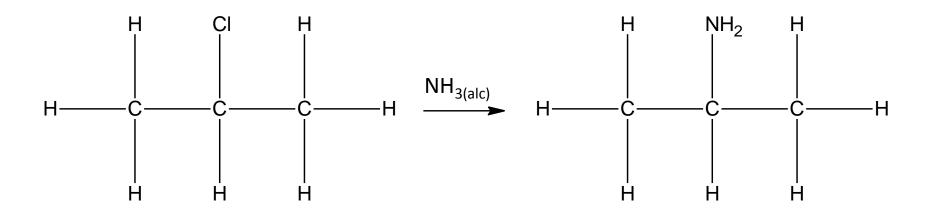
3-methylpentan-1-amine

SciPad pg 207

Properties of amines

Amines have _____higher ____ melting and boiling points than hydrocarbons because they are _____polar ___ and have ____strong ____ intermolecular forces.

Most amines are _____liquids ____ but some amines with long carbon chains are solids.


SciPad pg 208

Small carbon chain amines are soluble in water, but amines with long carbon chains are not.

Reactions of amines

Amines are made from the substitution reactions of haloalkanes, using $NH_{3(alc)}$.

Reactions of amines

Amines are bases, so they can accept protons (just like ammonia). Amines will turn red litmus blue

$$NH_3 + H_2O \Longrightarrow NH_4^+ + OH^ CH_3NH_2 + H_2O \Longrightarrow CH_3NH_3^+ + OH^-$$

Amines are bases, so they can react with acids to form salts

$$CH_3NH_2 + HCI \rightarrow CH_3NH_3^+ + CI^-$$
 (or CH_3NH_3CI)

SciPad pg 209