

IR Problems

1. Consider the following structures:

 $\mathsf{A} \qquad \mathsf{H_3C} \qquad \mathsf{CH_2} \qquad \mathsf{CH_2} \qquad \mathsf{CH_3}$

B O || C CH₂ CH₃

C NH₂ CH CH₃

D O || C CH₂ CH

E OH | CH₂ CH₃

F CH₂ OH

a. Which structure(s) would you expect to have a broad absorption around 3000-3500 cm⁻¹?

C, E, F NH₂, OH

b. What functional group(s) would be responsible for the absorption?

c. Which structure(s) would you expect to have an intense absorption around 1600-1800 cm⁻¹?

B, D, F C=O

d. What functional group(s) is responsible for this absorption?

Consider the following structures and IR spectrum:

Α

В

C

$$H_3C$$
 CH_2 CH_2 NH_2

D

Select the structure that belongs to the spectrum and explain your choice.

A as it does not have an OH, NH or C=O and therefore will not have a broad absorption at around 3000-3500 cm⁻¹ or an absorption around 1600-1800 cm⁻¹. B and D will have an absorption around 1600-1800 cm⁻¹ and C and D will have a broad absorption at around 3000-3500 cm⁻¹ and therefore are all not a match for the spectrum.