93102

NEW ZEALAND QUALIFICATIONS AUTHORITY MANA TOHU MĀTAURANGA O AOTEAROA

Scholarship 2011 Chemistry

9.30 am Saturday 19 November 2011

Time allowed: Three hours
Total marks: 40
Check that the National Student Number (NSN) on your admission slip is the same as the number at the top of this page.

You should answer ALL the questions in this booklet.
A periodic table is provided on page 2.
If you need more room for any answer, use the extra space provided at the back of this booklet.
Check that this booklet has pages $2-26$ in the correct order and that none of these pages is blank.
You are advised to spend approximately 35 minutes on each question.
YOU MUST HAND THIS BOOKLET TO THE SUPERVISOR AT THE END OF THE EXAMINATION.
PERIODIC TABLE OF THE ELEMENTS

$$
\text { Atomic number } \begin{array}{|c|}
\hline 1 \\
\\
\\
\\
\\
\\
\\
\\
\hline
\end{array} .
$$

	$\sim_{\sim}^{\circ} \stackrel{0}{\mathrm{O}}$	운	∞	$\underset{\infty}{\stackrel{\star}{\mathbf{\Sigma}} \stackrel{\infty}{\infty}}$	$\text { 㶽 } \times \stackrel{\bar{m}}{\square}$	$¢_{\infty}^{\text {c }}$ N	
	\wedge	¢ $\stackrel{\circ}{\circ} \mathrm{j}$		¢ ¢ ¢ ${ }_{\text {¢ }}^{\text {¢ }}$	π^{-N}		
	$\stackrel{-}{\bullet}$	$\infty_{\infty} \stackrel{\stackrel{\circ}{\circ}}{\stackrel{\circ}{\circ}}$	\bigcirc ¢		${\underset{N}{N}}^{\circ} \stackrel{\infty}{N}$	$\underset{\infty}{(2)}$	
	$\stackrel{\sim}{\sim}$	$\mathrm{n}^{\text {z }} \stackrel{\circ}{\dot{j}}$		mi ${ }_{\text {m }}^{\text {¢ }}$	in	\sum_{∞}^{∞}	
	\pm	$0 \stackrel{\circ}{\mathrm{~N}}$	\pm ¢ ${ }^{\circ}$	～	$\circ^{\circ \stackrel{\circ}{5}}$	∞_{∞}°	
	$\stackrel{\sim}{-}$	$\infty \stackrel{\infty}{\stackrel{\infty}{\circ}+}$	$\sim_{\square}^{\text {® }}$	¢	$\underset{\sim}{\text { g }}$ ¢ ${ }^{\circ}$	$\underset{\infty}{ } F \underset{\sim}{\text { N }}$	
			N	－${ }_{0}^{\text {¢ }}$	$\underset{\sim}{\infty}$	$\text { ® 옫 }_{\text {ㅇN }}$	
			F		$\hat{子}^{\text {® }}$		푞N
	$\frac{\overline{1}}{\mathrm{O}}$		$\stackrel{\sim}{2}$		$\%^{\text {¢ }}$		윤
	$\begin{aligned} & \text { ō } \\ & \underset{\sim}{\infty} \\ & \hline \end{aligned}$		∞	$\hat{N}^{\circ} \stackrel{\circ}{\circ} \stackrel{\circ}{\circ}$		$\stackrel{N}{\sim}$	
	$\frac{\stackrel{\rightharpoonup}{\omega}}{\frac{0}{0}}$		∞		$寸^{\vec{\sim}}{ }^{\text {²，}}$	$¢_{0}^{\circ 0 \%}$	우ㅇㅗㅜ응
	\sim_{-}^{\square}		\wedge		\％	$\stackrel{\text { ¢ }}{\text { ¢ }} \stackrel{\circ}{\circ}$	$\hat{O}^{\frac{\text { c }}{\text { ¢ }} \text {（ }}$
	$\stackrel{\searrow}{\otimes}$		\bigcirc	તi	～$\chi^{\circ} \stackrel{\circ}{\text { ® }}$	ォ ${ }^{\text {¢ }}$	-
			\checkmark			$\Vdash_{\sim}^{\text {® }}$	으으으N
			－	${\underset{N}{N}}^{i=\stackrel{9}{\sim}}$	$q^{\text {N }} \frac{\stackrel{N}{\sigma}}{\sigma}$		
			m		$\underset{\sim}{2 \times \infty}$	Σ_{i}^{3}	
	\sim	＋$\stackrel{\circ}{\text { ¢ }}$	$\underset{\sim}{\sim} \stackrel{\text { ® }}{ }_{\text {N }}^{\sim}$	$)_{N}^{\text {© }}$	$\underset{\sim}{\infty} \stackrel{\stackrel{\rightharpoonup}{\infty}}{\stackrel{\varphi}{\infty}}$	$\ddot{i n}^{\text {®ू }}$	$\infty_{\infty}^{\infty} \stackrel{\cong}{\sim}$
		${ }_{m}=\stackrel{\circ}{6}$	$F=\stackrel{\square}{2} \stackrel{0}{N}$	$\stackrel{\square}{\square} \times{ }_{\square}^{\text {¢ }}$		$i_{\sim}^{0} \mathrm{Un}^{\text {c }}$	노 ㄷN

Lanthanide Series	$\begin{gathered} \mathrm{La} \\ 139 \end{gathered}$	$\begin{gathered} \mathrm{Ce} \\ 140 \end{gathered}$	$\begin{gathered} \mathrm{Pr} \\ 141 \end{gathered}$	$\begin{gathered} \mathrm{Nd} \\ 144 \end{gathered}$	$\begin{aligned} & \text { Pm } \\ & 147 \end{aligned}$	$\begin{aligned} & \text { Sm } \\ & 150 \end{aligned}$	$\begin{gathered} \text { Eu } \\ 152 \end{gathered}$	Gd 157	$\begin{gathered} \text { Tb } \\ 159 \end{gathered}$	$\begin{gathered} \text { Dy } \\ 163 \end{gathered}$	$\begin{gathered} \text { Ho } \\ 165 \end{gathered}$	$\begin{gathered} \mathrm{Er} \\ 167 \end{gathered}$	$\begin{gathered} \text { Tm } \\ 169 \end{gathered}$	Yb 173
Series	89	90	Pa	u	N_{1}	Pu		96	${ }^{97}{ }_{\mathrm{Bk}}$	98	Es	$\begin{gathered} 100 \\ \text { Fm } \\ 257 \end{gathered}$	Md	No

You have three hours to complete this examination.

QUESTION ONE

(a) (i) Discuss how the charges on subatomic particles contribute to the size of atoms and their ions.
\qquad
(ii) Explain the trends in the atom and ion sizes (in pm) in Figure 1 below.

Relate your answer to your discussion in part (i).

Figure 1: Atomic and ionic radii (pm)
Note:

- The dark circles represent the ions.
- The bolded numbers are the ionic radii.
\qquad
(b) The Boudouard reaction is the name given to the oxidation-reduction reaction involving a mixture of carbon (graphite), carbon dioxide and carbon monoxide at equilibrium, at a given temperature. The reaction is an important process inside a blast furnace in the production of metals from metal oxides.

The graph below shows how the reaction mixture composition of the gases present changes with changing temperature at atmospheric pressure $(101 \mathrm{kPa})$.

Boudouard Equilibrium

(i) Identify, with justification, the product of the exothermic process in the Boudouard reaction.

Use your answer to discuss the reaction products when the hot gases from a blast furnace reach the cooler air at the top of the chimney.
\qquad
(ii) A large, heat-proof syringe with a freely moveable airtight piston initially contained 50 mL of carbon dioxide at 101 kPa and $25^{\circ} \mathrm{C}$, plus 1 g of granular carbon. The apparatus was heated and maintained at a certain constant temperature until equilibrium was reached. The pressure of the system remained constant at 101 kPa throughout. The apparatus was then cooled rapidly to $25^{\circ} \mathrm{C}$. (At this temperature any further change in composition was negligible.) A total of 60 mL of gas was then present.

Determine the temperature at which the reaction was carried out.
Note:

- The same conditions apply to this experiment and to that represented by the graph on the previous page.
- The volume of a substance in its gas phase at a particular temperature and pressure is directly proportional to the amount in moles of the substance present.
\qquad

QUESTION TWO

(a) Account for the differences in the properties of the compounds in the table below.

Name	Structural formula	Melting Point $/{ }^{\circ} \mathrm{C}$	Solubility in water at $25^{\circ} \mathrm{C}$
Cyclohexane $\mathrm{C}_{6} \mathrm{H}_{12}$		7	Insoluble
Cyclohexanol $\mathrm{C}_{6} \mathrm{H}_{11} \mathrm{OH}$		25	Sparingly soluble
cis-cyclohexane-1,2-diol $\mathrm{C}_{6} \mathrm{H}_{10}(\mathrm{OH})_{2}$		98	Very soluble

\qquad
(b) A year 11 student carried out an experiment to compare the energy released when octane and ethanol were burned as fuels. Octane was found to release considerably more energy than ethanol. The student concluded that this was because octane was a larger molecule, and so there were more chemical bonds to break, and hence more energy released in the reaction.

Discuss the misconceptions in the student's explanation and use appropriate data from the table below to provide your own answer for the observation.
$M($ octane $)=114.0 \mathrm{~g} \mathrm{~mol}^{-1} \quad M($ ethanol $)=46.1 \mathrm{~g} \mathrm{~mol}^{-1}$

Bond enthalpy data $/ \mathrm{kJ} \mathrm{mol}^{-1}$

$\mathrm{C}-\mathrm{H}$	414
$\mathrm{C}-\mathrm{O}$	358
$\mathrm{C}=\mathrm{O}$	804
$\mathrm{C}-\mathrm{C}$	346

$\mathrm{O}-\mathrm{H}$	463
$\mathrm{C} \equiv \mathrm{O}$	1076
$\mathrm{H}-\mathrm{H}$	436
$\mathrm{O}=\mathrm{O}$	498

\qquad

QUESTION THREE

(a) A mixture contains oxalic acid, $\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$, sodium oxalate, $\mathrm{Na}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$, and a water soluble impurity that does not react with solutions of sodium hydroxide or potassium permanganate.
To determine the composition of the mixture, 2.496 g of the mixture was dissolved in water to give 100.00 mL of solution.
In one test, 5.00 mL of the solution was titrated with $0.01803 \mathrm{~mol} \mathrm{~L}^{-1}$ acidified potassium permanganate solution and needed 23.35 mL to reach the equivalence point.

In another test, 10.00 mL of the solution was titrated with $0.1040 \mathrm{~mol} \mathrm{~L}^{-1}$ sodium hydroxide solution and needed 17.30 mL to reach the equivalence point.

Determine the mass fractions of oxalic acid, oxalate ion and the impurity.

$$
M\left(\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}\right)=90.04 \mathrm{~g} \mathrm{~mol}^{-1} \quad M\left(\mathrm{Na}_{2} \mathrm{C}_{2} \mathrm{O}_{4}\right)=134.0 \mathrm{~g} \mathrm{~mol}^{-1}
$$

\qquad
(b) Manganese is an element that exhibits a number of different oxidation states. Half-cell reactions and potentials for the different oxidation states vary depending on the conditions. The table gives the standard reduction potentials for manganese species in aqueous solution ranging from $\mathrm{Mn}(\mathrm{II})$ to $\mathrm{Mn}(\mathrm{VII})$ at $\mathrm{pH}=0$ and at $\mathrm{pH}=14$.

Conditions	Reduction half-equation	E° / V
$\mathrm{pH}=0$	$\mathrm{Mn}^{2+}(a q)+2 \mathrm{e}^{-} \rightarrow \mathrm{Mn}(s)$	-1.19
	$\mathrm{MnO}_{4}^{-}(a q)+\mathrm{H}^{+}(a q)+\mathrm{e}^{-} \rightarrow \mathrm{HMnO}_{4}^{-}(a q)$	+0.90
	$\mathrm{MnO}_{2}(s)+4 \mathrm{H}^{+}(a q)+2 \mathrm{e}^{-} \rightarrow \mathrm{Mn}^{2+}(a q)+2 \mathrm{H}_{2} \mathrm{O}(\ell)$	+1.23
	$\mathrm{MnO}_{4}^{-}(a q)+8 \mathrm{H}^{+}(a q)+5 \mathrm{e}^{-} \rightarrow \mathrm{Mn}^{2+}(a q)+4 \mathrm{H}_{2} \mathrm{O}(\ell)$	+1.51
	$\mathrm{Mn}^{3+}(a q)+\mathrm{e}^{-} \rightarrow \mathrm{Mn}^{2+}(a q)$	+1.54
	$\mathrm{MnO}_{4}^{-}(a q)+4 \mathrm{H}^{+}(a q)+3 \mathrm{e}^{-} \rightarrow \mathrm{MnO}_{2}(s)+2 \mathrm{H}_{2} \mathrm{O}(\ell)$	+1.69
	$\mathrm{HMnO}_{4}^{-}(a q)+3 \mathrm{H}^{+}(a q)+2 \mathrm{e}^{-} \rightarrow \mathrm{MnO}_{2}(s)+2 \mathrm{H}_{2} \mathrm{O}(\ell)$	+2.10
	$\mathrm{MnO}_{2}(s)+4 \mathrm{H}^{+}(a q)+\mathrm{e}^{-} \rightarrow \mathrm{Mn}^{3+}(a q)+2 \mathrm{H}_{2} \mathrm{O}(\ell)$	+0.95
$\mathrm{pH}=14$	$2 \mathrm{MnO}_{2}(s)+\mathrm{H}_{2} \mathrm{O}(\ell)+2 \mathrm{e}^{-} \rightarrow \mathrm{Mn}_{2} \mathrm{O}_{3}(s)+2 \mathrm{OH}^{-}(a q)$	+0.15
	$\mathrm{Mn}_{2} \mathrm{O}_{3}(s)+3 \mathrm{H}_{2} \mathrm{O}(\ell)+2 \mathrm{e}^{-} \rightarrow 2 \mathrm{Mn}(\mathrm{OH})_{2}(s)+2 \mathrm{OH}^{-}(a q)$	-0.23
	$\mathrm{Mn}(\mathrm{OH})_{2}(s)+2 \mathrm{e}^{-} \rightarrow \mathrm{Mn}(s)+2 \mathrm{OH}^{-}(a q)$	-1.19

(i) Explain why $\mathrm{Mn}(\mathrm{II})$ is not oxidised by O_{2} in solutions at $\mathrm{pH}=0$, but is oxidised by O_{2} solutions in which $\left[\mathrm{OH}^{-}\right]$is $1 \mathrm{~mol} \mathrm{~L}^{-1}$.

$$
\begin{array}{ll}
\mathrm{O}_{2}(g)+2 \mathrm{H}_{2} \mathrm{O}(\ell)+4 \mathrm{e}^{-} \rightarrow 4 \mathrm{OH}^{-}(a q) & E^{\circ}=+0.40 \mathrm{~V}(\mathrm{pH}=14) \\
\mathrm{O}_{2}(g)+4 \mathrm{H}^{+}(a q)+4 \mathrm{e}^{-} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\ell) & E^{\circ}=+1.23 \mathrm{~V}(\mathrm{pH}=0)
\end{array}
$$

(ii) KMnO_{4} is a common oxidant, and in acidic conditions may be reduced to MnO_{2} or Mn^{2+}.

Discuss why the intermediate species HMnO_{4}^{-}does not accumulate during the reduction of MnO_{4}^{-}to MnO_{2}.
\qquad
(iii) Discuss the pH dependence of the stability of Mn (III) in aqueous solution.
\qquad

QUESTION FOUR

(a) (i) The normal pH in blood plasma is 7.40 . The pH of body fluids is regulated by the presence of $\mathrm{CO}_{3}{ }^{2-}, \mathrm{HCO}_{3}^{-}$and CO_{2} dissolved in these fluids.
At $25^{\circ} \mathrm{C}, K_{\mathrm{a}}\left(\mathrm{H}_{2} \mathrm{CO}_{3}\right)=4.2 \times 10^{-7}$ and $K_{\mathrm{a}}\left(\mathrm{HCO}_{3}^{-}\right)=4.7 \times 10^{-11}$.

Identify the components from the list above that would form the best buffer at this pH and calculate their ratio.

Determine whether this buffer is more effective against added acid or base.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(ii) Lactic acid (HLac) is often said to be produced by the body during rapid exercise.

Show by calculation that lactic acid is mainly present as the lactate ion (Lac^{-}) at $\mathrm{pH}=7.40$.

$$
\mathrm{p} K_{\mathrm{a}}(\text { lactic acid })=3.86
$$

(b) Predisposition for the condition known as gout occurs when the concentration of uric acid (HUr) and urate ions $\left(\mathrm{Ur}^{-}\right)$in the blood becomes too high. Uric acid is a weak acid. $\mathrm{p} K_{\mathrm{a}}=5.4$ at $37^{\circ} \mathrm{C}$.

At $37^{\circ} \mathrm{C}$, the solubility of sodium urate is $8.00 \times 10^{-3} \mathrm{~mol} \mathrm{~L}^{-1}$ and the solubility of uric acid is $5.00 \times 10^{-4} \mathrm{~mol} \mathrm{~L}^{-1}$.
In blood serum, $\left[\mathrm{Na}^{+}\right]=0.130 \mathrm{~mol} \mathrm{~L}{ }^{-1}$ (ie at $\mathrm{pH}=7.4$ and temperature of $37^{\circ} \mathrm{C}$).
(i) Calculate the maximum urate concentration at which sodium urate will not precipitate, and show by calculation that uric acid will not precipitate at this concentration either.
\qquad
(ii) One form of kidney stone is made of crystals of uric acid. These can form when the concentration of uric acid and urate is high, and the pH of urine drops to around 5 to 6 .

Calculate the pH at which these stones can form.
Assume that the total concentration of uric acid and urate is $2.00 \times 10^{-3} \mathrm{~mol} \mathrm{~L}^{-1}$.
\qquad

QUESTION FIVE

(a) Compound \mathbf{A} has the molecular formula $\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{4}$. Compound \mathbf{B} is a stereoisomer of Compound A. The melting points of Compound \mathbf{A} and Compound \mathbf{B} are $135^{\circ} \mathrm{C}$ and $287^{\circ} \mathrm{C}$ respectively, due to the ability of Compound \mathbf{A} to form an intramolecular hydrogen bond. Compound \mathbf{A} reacts, on heating, with dilute $\mathrm{H}_{2} \mathrm{SO}_{4}$ to form Compound $\mathbf{C}, \mathrm{C}_{4} \mathrm{H}_{6} \mathrm{O}_{5}$. Compound \mathbf{C} is able to exist as enantiomers. Compound \mathbf{A} will react with potassium permanganate to form Compound $\mathbf{D}, \mathrm{C}_{4} \mathrm{H}_{6} \mathrm{O}_{6}$. When Compound \mathbf{D} is oxidised by periodate ions $\left(\mathrm{IO}_{4}^{-}\right)$, Compound \mathbf{E} is produced. Compound \mathbf{E} has the molecular formula $\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{O}_{3}$ and gives a positive test with Tollens' reagent (ammoniacal silver nitrate). Each molecule of Compound D produces 2 molecules of Compound \mathbf{E}.
(i) Identify the structures of Compounds $\mathbf{A}-\mathbf{E}$. Justify your choice of the stereoisomers \mathbf{A} and \mathbf{B} and write a balanced equation for the reaction of Compound \mathbf{E} with Tollens' reagent.

\qquad
(ii) Draw two other isomers of Compound \mathbf{A} : one that has different functional groups from Compound \mathbf{A}, and another that has the same functional groups as Compound \mathbf{A}.
Explain why neither of these isomers meet the requirements to be Compound \mathbf{A} as described in part (a).
(b) Discuss the potential for Compound \mathbf{C} to form polymers.

Extra space if required. Write the question number(s) if applicable.

Extra space if required. Write the question number(s) if applicable.

Extra space if required. Write the question number(s) if applicable.

Extra space if required. Write the question number(s) if applicable.

```
93102
```

Assessor's use only.
Keep flap folded in.

ASSESSOR'S USE ONLY

Question	Mark
ONE	
TWO	
THREE	(8)
FOUR	
	(8)

