EXEMPLAR

Level 3 Chemistry, 2013
 91390 Demonstrate understanding of thermochemical principles and the properties of particles and substances

2.00 pm Tuesday 19 November 2013

Credits: Five

Achievement	Achievement with Merit	Achievement with Excellence
Demonstrate understanding of thermochemical principles and the properties of particles and substances.	Demonstrate in-depth understanding of thermochemical principles and the properties of particles and substances.	Demonstrate comprehensive understanding of thermochemical principles and the properties of particles and substances.

Check that the National Student Number (NSN) on your admission slip is the same as the number at the top of this page.

You should attempt ALL the questions in this booklet.

A periodic table is provided on the Resource Sheet L3-CHEMR.
If you need more space for any answer, use the pages) provided at the back of this booklet and clearly number the question.

Check that this booklet has pages $2-10$ in the correct order and that none of these pages is blank.
YOU MUST HAND THIS BOOKLET TO THE SUPERVISOR AT THE END OF THE EXAMINATION.

LOW ACHIEVEMENT

You are advised to spend 60 minutes answering the questions in this booklet.

QUESTION ONE

(a) Complete the following table.

(b) Discuss the data for each of the following pairs of particles.
(i)

Atom	Electronegativity
O	3.44
Se	2.55

(14) the electronegativity values decrease down a column. Electronegativity tells us how easy it is to hatroacti an electron to the atom. Se has lower electronegativity than O as it has more protons and more electrons. This causes shielding of the valence shell and there is less, pull from the nucleus to the electron \therefore harder to attract an/electron. II One valid point (shielding) contributes

Atom or ion	Radius/pm
Cl	99
Cl^{-}	181

$$
\left|\begin{array}{ll}
C 1=1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{5} \\
C_{1}^{1}=1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{2}
\end{array}\right|
$$

Cl^{-}has a bigger radius than Cl . This is because it has more electrons than Cl las shown by the electron configurations above. $\mathrm{Cl}^{-\prime}$'s valence shell has 6 electrons while cl's valence shell has 5. This results in Cl^{-1} s electron repelling each other more and becoming more far away from the \rightleftarrows nucleus so Cl^{-}is bigger than Cl ll Two valid points
(iii)

Atom	First ionisation energy /kN mol ${ }^{\mathbf{1}}$
Li	526
Cl	1257

Provides evidence for merit.
The Ionisation energy is the energy it takes toremove an electron from an atom. Cl has 17 protons while Li only has 3. This means that a has more protons than Li . This makes the proton-electron attraction of Cl larger and therefore it needs more energy (than Li) to break the proton-electron attraction, to remove the electron. So Cl has a larger Ionisation energy than lin Insufficient evidence in (i) a (ii) for excellence.

Evidence toward achievement.
If the charge outside the square brackets on $\mathrm{PCl}_{6}{ }^{-}$was given, then pent would have been awarded.
(ii) The Lewis diagrams for SF_{4} and XeF_{4} are shown below.

15F4 is a polar molecule. It has 5 areas of negative charge which consists of 4 bonded pairs of electrons and 1 lone pair of electron. These 5 areas allow for the shape of SF_{4} to be trigonal pyramid while the bonded pairs and lone pairs, allow for the overall shape to bet a trigonal Because of the difference in electronegativity, the molecule is polar. XeF_{4} is a non polar molecule. It has 6 areas $>$ of negative charge allowing for the shape l of octahedral to form. However it has 4 bonded pairs of electrons and 2 bonded pairs and therefore the overall shape is a trigonal bipyramidal. The electronegativity difference makes the molecule non polar.
Due to the VSEPR theory, the electrons. are undergoing maximum repulsion for both molecules and ". causes their respective shapes to form

Evidence for achievement, correct polarities but insufficient reasoning. Incorrect shapes.

QUESTION TWO
(a) (i) Explain what is meant by the term $\Delta_{\text {vap }} H^{\circ}\left(\mathrm{H}_{2} \mathrm{O}(\ell)\right)$. change in heat needed to turn a liquid into gas

$$
\longrightarrow \mathrm{H}_{2} \mathrm{O}(1) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \quad \Delta \operatorname{vap} H \|
$$

Correct-achievement.
(ii) When gaseous hydrogen and oxygen are heated in a test tube, droplets of liquid water form on the sides of the test tube.

Calculate $\Delta_{\mathrm{f}} H^{\circ}\left(\mathrm{H}_{2} \mathrm{O}(\ell)\right)$, given the following data:

(iii) Explain why the temperature of liquid water does not change when it is heated at $100^{\circ} \mathrm{C}$. \int Liquid water temperature does not change when it is heated at $100^{\circ} \mathrm{C}$ because this is its maximum temperature. This means that this is the temperature 2 where its particles cannot move any faster anymore n

Answer does not refer to energy being used to break intermolecular forces.
(b) (i) When 25.0 mL of a $1.00 \mathrm{~mol} \mathrm{~L}^{-1}$ hydrochloric acid solution, HCl , is added to 25.0 mL of a $1.00 \mathrm{~mol} \mathrm{~L}^{-1}$ ammonia solution, NH_{3}, a temperature rise of $6.50^{\circ} \mathrm{C}$ is recorded, as a neutralisation reaction occurs to produce aqueous ammonium chloride and water.

Calculate $\Delta_{\mathrm{r}} \mathrm{H}^{\circ}$ for this neutralisation reaction. $\mathrm{NNH}_{3} \mathrm{Cl}$ The mass of the mixture is 50.0 g .
Assume specific heat capacity of the aqueous ammonium chloride $=4.18 \mathrm{~J} \mathrm{~g}^{-1}{ }^{\circ} \mathrm{C}^{-1}$

$$
V_{\Delta t}=6.50^{\circ} \mathrm{C} \quad \Delta H=m t s \mathrm{~K}
$$

$$
50 \times 6.5 \times 4.18 n
$$

crack e

$$
\left(n=\frac{m}{M}=\frac{1.3585}{(3+7+7)}=0.050315 \mathrm{~mol} 1 /\right.
$$

$$
\Lambda^{\Delta r H}=\frac{\Delta H}{n}=\frac{1.3585}{0.050315}=27 \mathrm{kJmol}^{-1} h
$$

Evidence for achievement, as only the fist Step is correct.
(ii) When the $\Delta_{\mathrm{r}} H^{\circ}$ for the neutralisation above was found experimentally in a school laboratory, the value obtained was lower than the theoretical value.

Account for the difference in values, and suggest how this difference could be minimised.
The 'missing' value (ie: Theoretical value - obtained) is lost to heat. This could be minimised by making the experiment as accurate as possible. n He: it becomes heat 1
Suggestion ar to how to minimise heat loss is insufficient.

QUESTION THREE
(a)

Molecule	Boiling point $/{ }^{\circ} \mathrm{C}$
Hydrazine, $\mathrm{N}_{2} \mathrm{H}_{4}$	114
Fluoromethane, $\mathrm{CH}_{3} \mathrm{~F}$	-78.4
Decane, $\mathrm{C}_{10} \mathrm{H}_{22}$	174

Use the information in the table above to compare and contrast the boiling points of hydrazine, fluoromethane, and decane in terms of the relative strengths of the attractive forces between the particles involved.
Furomethane has the lowest boiling point because? due to its shape and electronegativity, it has a symmetrical shape and is therefore a non polar molecule. Non polar molecules only have temporary havel dipoles which very weak intermolecular forces. This means that it does not need much energy to break its bonds. Hydrazine is a polar molecule. It has a high boiling point because due to its shape and electronegativity it has aasymmetrical shape and is ${ }^{\circ}$ a polar. Polar
\qquad molecules have permanent dipoles and their intermolecular forces are stronger than non polar's. It needs more energy to break its bonds. $\mathrm{N}_{2} \mathrm{H}_{4}$ also has hydrogen? bonds in between the $\mathrm{H}-\mathrm{N}$ and since N is very electronegative, it attracts electrons well and you need a lot of energy to break the hydrogen bonds. Decane is a polar molecule and so has permanent dipoles. It is higher than Hydrazine as it has a longer molecule and $:$ has a stronger intermolecular force and it requires the most energy to remove I break these bonds A

Provides evidence tourarofs achievement as the answer relates the boiling point to the strength of the intermolecular forces, and identifies the correct

Chemistry 91390, 2013
intermolemlar force for at least one molecule.
(b) Decane is a component of petrol. Carbon dioxide and water are formed when decane burns completely in oxygen.

$$
\mathrm{C}_{10} \mathrm{H}_{22}(\ell)+15.5 \mathrm{O}_{2}(g) \rightarrow 10 \mathrm{CO}_{2}(g)+11 \mathrm{H}_{2} \mathrm{O}(\ell)
$$

Calculate $\Delta_{\mathrm{c}} H^{\circ}\left(\mathrm{C}_{10} \mathrm{H}_{22}(\ell)\right)$, given the following data:

(c) Hydrazine is often used as a rocket fuel. When liquid hydrazine undergoes combustion, it forms nitrogen and water:

$$
\mathrm{N}_{2} \mathrm{H}_{4}(\ell)+\mathrm{O}_{2}(g) \rightarrow \mathrm{N}_{2}(g)+2 \mathrm{H}_{2} \mathrm{O}(g) \quad \Delta_{\mathrm{c}} H^{\circ}\left(\mathrm{N}_{2} \mathrm{H}_{4}(\ell)\right)=-624 \mathrm{~kJ} \mathrm{~mol}^{-1}
$$

Explain why liquid hydrazine readily burns in oxygen.
Your answer should consider both enthalpy and entropy changes.

EXEMPLAR

Levell 3 Chemistry, 2013
 91390 Demonstrate understanding of thermochemical principles and the properties of particles and sulbstances

2.00 pm Tuesday 19 November 2013
 Credits: Five

Achievement	Achievement with Merit	Achievement with Excellence
Demonstrate understanding of thermochemical principles and the properties of particles and substances.	Demonstrate in-depth understanding of thermochemical principles and the properties of particles and substances.	Demonstrate comprehensive understanding of thermochemical principles and the properties of particles and substances.

Check that the National Student Number (NSN) on your admission slip is the same as the number at the top of this page.

You should attempt ALL the questions in this booklet.

A periodic table is provided on the Resource Sheet L3-CHEMR.
If you need more space for any answer, use the page(s) provided at the back of this booklet and clearly number the question.

Check that this booklet has pages $2-10$ in the correct order and that none of these pages is blank.

YOU MUST HAND THIS BOOKLET TO THE SUPERVISOR AT THE END OF THE EXAMINATION.

HIGH ACHIEVEMENT

You are advised to spend 60 minutes answering the questions in this booklet.

QUESTION ONE

$$
1 s 2 s 2 p 3 s 3 p 4 s 3 d 4 p
$$

(a) Complete the following table. 34

Symbol	Electron configuration
Se	$1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2} 3 d^{10} 4 p^{4}$
V	$1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2} 3 d^{3}$
V^{3+}	$1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 45^{0} 3 d^{2}$

Two lines correct - achievement.
(b) Discuss the data for each of the following pairs of particles.
(i)

Atom	Electronegativity
O	3.44
Se	2.55

a the electronegativity is the atoms tendancy to attract other electrons. The data shows that oxygen has a higher electronegativety then S_{e}, therefore a haler tendancy lability to attract electrons. This is because se has more electrons then Oxygen. II Answer lacks sufficient details for achievement
(ii)

Atom or ion	Radius/pm
Cl	99
Cl^{-}	181

A this table shows that Cl^{-}has a larger radius than Cl. This is because with an extra electron the attractive force from the nucleus is reduced, because it now has to hold another electron in place. This means all the electrons are held less Highly, and there fore are further away from the nucleus, giving (1) a larger Answer lacks sufficient chemistry 91390, 2013 radius. details for achievement.
(iii)

Atom	First ionisation energy /oJ $\mathbf{~ m o l}^{-\mathbf{1}}$
Li	526
Cl	1257

for Merit in part (iii),
but giver achievement as
AssEssors
USE ONLY
This table shows that $C I$ has a higher first (i) i- (ii) ionisation energy then Li . This is because avi There are more protons and electrons in $C 1$, meaning It has a higher nuclear charge. There higher attractive forces between protons and neutrons, Therefore more energy is required to remove the least rightly bound electronic from and in the process breaking the proton - to-electron bond ll.

$$
6 \times 848
$$

(c) (i) Complete the following table.

6×7
 $=42$
47
$=1$
$=46$
evidence
6 is
of electrons. Achievement evidence

28

Chemistry 91390, 2013
 orly as PCl_{6}^{-}is nixing a pair felectroas.

Compare and contrast the polarities and shapes of these two molecules. USF4 is the see saw shape, where
$X_{e} F_{4}$ is the square planar shape.!

Two shapes correct \rightarrow achievement.

(a) (i) Explain what is meant by the term $\Delta_{\text {vap }} H^{\circ}\left(\mathrm{H}_{2} \mathrm{O}(\ell)\right)$.

प Δ rap is the energy required to change one mol of liquid water $\left(\mathrm{H}_{2} \mathrm{O}\right)$ to $\mathrm{H}_{2} \mathrm{O}$ gas at boiling point ti Must state 'standard conditions'
(ii) When gaseous hydrogen and oxygen are heated in a test tube, droplets of liquid water form on the sides of the test tube.

Calculate $\Delta_{\mathrm{f}} H^{\circ}\left(\mathrm{H}_{2} \mathrm{O}(\ell)\right)$, given the following data: endo

$$
\begin{array}{ll}
\Delta_{\mathrm{f}} H^{\circ}\left(\mathrm{H}_{2} \mathrm{O}(g)\right) & =-242 \mathrm{~kJ} \mathrm{~mol}^{-1}-\text { energy bond breaking } \\
\Delta_{\text {vap }}^{\prime} H^{\circ}\left(\mathrm{H}_{2} \mathrm{O}(\ell)\right) & =+44 \mathrm{~kJ} \mathrm{~mol}^{-1} \text { energy gained }
\end{array}
$$

$$
\Delta f^{\circ}\left(\mathrm{H}_{2} \mathrm{O}(\mathrm{~g})\right) \rightarrow \Delta \operatorname{vapH}^{\circ}\left(\mathrm{H}_{2} \mathrm{O}(1)\right.
$$

products - reactants
$44 \mathrm{kJmol}-(-242 \mathrm{kJmol})$

$$
\begin{aligned}
& 286 \mathrm{kJmol}^{-1} \\
& \text { Incorrect method. }
\end{aligned}
$$

(iii) Explain why the temperature of liquid water does not change when it is heated at $100^{\circ} \mathrm{C}$.
(w) $100^{\circ} \mathrm{C}$ is the boring point of water, however at this temperature energy is required to break the intermolecular bonds thus turning it into gas, rather then
raising the temperature of liquid water. so the temperature of land water will not increase further then $100^{\circ} \mathrm{C}$, rather it will be turned into gas.I Correct \rightarrow Merit.

(a)

Molecule	Boiling point $/{ }^{\circ} \mathrm{C}$
Hydrazine, $\mathrm{N}_{2} \mathrm{H}_{4}$	114
Fluoromethane, $\mathrm{CH}_{3} \mathrm{~F}$	78.4
Decane, $\mathrm{C}_{10} \mathrm{H}_{22}$	174

Use the information in the table above to compare and contrast the boiling points of hydrazine, fluoromethane, and decane in terms of the relative strengths of the attractive forces between the particles involved.
If We can observe that Flnoromithate has the lowest boiling point, Hydrazine has the nest highest boiling point, and Decare has the highest boiling point. boiling point indicates the strength of bonds and intermolecular forces in a molecule. From this we can deduce that Decare has the strongest bonds and intermolecular forces, followed by Hydrazine, and then Flnoromethaneh.

Provides evidence towards achievement as the ensurer relates the boiting point to the strength of the intermolecular forces.
(b) Decane is a component of petrol. Carbon dioxide and water are formed when decane burns completely in oxygen.

$$
\begin{aligned}
& \mathrm{C}_{10} \mathrm{H}_{22}(\ell)+15.5 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 10 \mathrm{CO}_{2}(\mathrm{~g})+11 \mathrm{H}_{2} \mathrm{O}(\ell)
\end{aligned}
$$

Calculate $\Delta_{\mathrm{c}} H^{\circ}\left(\mathbb{Q}_{10} \mathrm{H}_{22}(\ell)\right)$, given the following data:

$$
\begin{array}{lll}
\Delta_{\mathrm{f}} H^{\circ}\left(\mathrm{C}_{10} \mathrm{H}_{22}^{\prime}(\ell)\right) & = & -250 \mathrm{~kJ} \mathrm{~mol}^{-1} \\
\Delta_{\mathrm{f}} H^{\circ}\left(\mathrm{CO}_{2}(g)\right) & =393 \mathrm{~kJ} \mathrm{~mol}^{-1} \\
\Delta_{\mathrm{f}} H^{\circ}\left(\mathrm{H}_{2} \mathrm{O}(\ell)\right) & =-286 \mathrm{~kJ} \mathrm{~mol}^{-1}
\end{array}
$$

$$
\eta \mathrm{C}_{10} \mathrm{H}_{22}(1)+15.5 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 10 \mathrm{CO}_{2}(\mathrm{~g})+11 \mathrm{H}_{2} \mathrm{O}(1)
$$

to find energy change (\& products)-(ε reactants)
Q

$$
\begin{gathered}
(10 x-393)+(11 x-286)-(-250) \\
=(-7076)-(-250) \\
=-6826 k 3 \mathrm{moll}
\end{gathered}
$$

Correct \rightarrow mend .
(c) Hydrazine is often used as a rocket fuel. When liquid hydrazine undergoes combustion, it forms nitrogen and water:

$$
\mathrm{N}_{2} \mathrm{H}_{4}(\ell)+\mathrm{O}_{2}(g) \rightarrow \mathrm{N}_{2}(g)+2 \mathrm{H}_{2} \mathrm{O}(g) \quad \Delta_{\mathrm{c}} H^{\circ}\left(\mathrm{N}_{2} \mathrm{H}_{4}(\ell)\right)=-624 \mathrm{~kJ} \mathrm{~mol}^{-1}
$$

Explain why liquid hydrazine readily burns in oxygen.
Your answer should consider both enthalpy and entropy changes.
M the $A_{C H}$ is the energy change when one mole of a substance is completely burnt, with all products and reactants in their standard states. The combustion of hydrazine releases $624 \mathrm{K}. \mathrm{~mol}^{-1}$ of energy, therefore the process is exothermic. The substance goes from liquid in the form of fuel to gas. Because the particles go from a more ordered state in liquid, to a less ordered state in gas, this is an increase in entropy. The hydrazine goes from a less probable state to a more probable
one with no energy input, the exposure. to oxygen is what initiates the combustion.

Provides evidence towards merit.
If the candidate had link exothermic reactions to spontaneity more clearly then excellence would have been furarded.

