Assessment Schedule - 2011

Chemistry: Describe properties of aqueous systems (90700)

Evidence Statement

TWO (a)(i) (ii)	$\mathrm{Zn}(\mathrm{OH})_{2}(s) \rightleftharpoons \mathrm{Zn}^{2+}(a q)+2 \mathrm{OH}^{-}(a q)$ $K_{\mathrm{s}}=\left[\mathrm{Zn}^{2+}\right]\left[\mathrm{OH}^{-}\right]^{2}$	TWO of: - Part (a) correct.		
(b)	Let s be solubility $\begin{aligned} & K_{\mathrm{s}}=4 s^{3} \\ & s=\sqrt[3]{\frac{K_{\mathrm{s}}}{4}} \\ & s=1.96 \times 10^{-6} \mathrm{~mol} \mathrm{~L}^{-1} \end{aligned}$	- Method correct, but error in calculation. (Allow s^{2} follow on from part (a) or $2 s^{3}$ error but if so, must have calculated s value correctly according to the candidates	Solubility calculated correctly, (incorrect sig. fig.). AND ONE of:	Solubility calculated correctly, 3 sig. fig. and s is defined. AND
(c)	Raising the pH will increase the concentration of OH^{-} ions. This will initially cause additional precipitate to form. Once the pH has been increased sufficiently (enough OH^{-}has been added) the formation of a complex ion with Zn^{2+} will occur, lowering OH^{-}ion concentration in solution. Thus the precipitate will redissolve as a complex ion and less precipitate will be at the bottom of the test tube.	- Recognises that $\left[\mathrm{OH}^{-}\right]$has increased. - Recognises equilibrium will shift to the left.	will form and links this to either less solid remaining or equilibrium shifting to the right. - Identifies equilibrium shifting to the left due to additional OH^{-}. - Explains equilibrium shifting to the left in terms of the I.P. now exceeding K_{s}.	re-dissolves, as equilibrium shifts in the forwards direction / to RHS. This shift to the right will occur so more Zn^{2+} and OH^{-} will dissolve into solution so that the solution becomes saturated again.

NCEA Level 3 Chemistry (90700) 2011 — page 3 of 4

THREE (a) (b)	$\mathrm{HG}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{G}^{-}+\mathrm{H}_{3} \mathrm{O}^{+}$ OR $\mathrm{HOCH}_{2} \mathrm{COOH}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{HOCH}_{2} \mathrm{COO}^{-}+\mathrm{H}_{3} \mathrm{O}^{+}$ $K_{\mathrm{a}}=\frac{\left[\mathrm{G}^{-}\right]\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]}{[\mathrm{HG}]}$ (must have equilibrium arrow)	TWO of: - Part (a) and (b) correct. - EITHER		
(c)	$\begin{aligned} & {\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\sqrt{K_{\mathrm{a}}} \times[\mathrm{HG}]} \\ & K_{\mathrm{a}}=1.50 \times 10^{-4} \\ & {\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=9.99 \times 10^{-3} \mathrm{~mol} \mathrm{~L}^{-1}} \\ & \mathrm{pH}=2.00 \end{aligned}$	Correct value for K_{a} OR Correct rearrangement of K_{a} expression to make $\left[\mathrm{H}_{3} 0^{+}\right]$subject.	Correct answer with minor error. AND	Correct answer with appropriate number of sig. fig.
(d)	$\begin{aligned} & {\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=1.00 \times 10^{-4} \mathrm{~mol} \mathrm{~L}^{-1}} \\ & {\left[\mathrm{G}^{-}\right]=\frac{K_{\mathrm{a}} \times[\mathrm{HG}]}{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]}=1.48 \mathrm{~mol} \mathrm{~L}^{-1}} \end{aligned}$ Thus in $200 \mathrm{~mL}=0.2 \times 1.48=0.296 \mathrm{~mol}$ Alternative method $\begin{aligned} & \mathrm{pH}=p K_{\mathrm{a}}+\log _{10} \frac{\text { [weak base }]}{[\text { weak acid }]} \\ & 4.00=3.83+\log _{10} \frac{\text { [base }]}{[\text { acid }]} \\ & \log _{10}[\text { base }]=0.17 \\ & {[\text { base }]=1.48 \mathrm{~mol} \mathrm{~L}^{-1}} \end{aligned}$ Thus, in $200 \mathrm{~mL}=00.2 \times 1.48=0.296 \mathrm{~mol}$	- EITHER Correct $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$. OR K_{a} expression rearranged for $\left[\mathrm{G}^{-}\right]$or other appropriate method for $\left[\mathrm{G}^{-}\right]$ stated and rearranged for $\left[\mathrm{G}^{-}\right]$.	Correct [G]. OR Correct method for $\left[\mathrm{G}^{-}\right]$and $\mathrm{n}\left(\mathrm{G}^{-}\right)$ calculation but incorrect answer.	AND Correct $\mathrm{n}\left(\mathrm{G}^{-}\right)$to 3 sig. fig.

FOUR (a)	A At point A, there is an equi-molar mixture of HEt and Et^{-}. On addition of OH^{-}ions, the acid part of the buffer neutralises the OH^{-}ions, by donating a proton. The acid reacts with the base: $\mathrm{HEt}+\mathrm{OH}^{-} \rightarrow \mathrm{Et}^{-}+\mathrm{H}_{2} \mathrm{O}$ On addition of $\mathrm{H}_{3} \mathrm{O}^{+}$, the ethanoate will accept a proton from the hydronium ion: $\mathrm{Et}^{-}+\mathrm{H}_{3} \mathrm{O}^{+} \rightarrow \mathrm{HEt}+\mathrm{H}_{2} \mathrm{O}$ Candidate may discuss equilibrium shift. $\mathrm{p} K_{\mathrm{a}}=\mathrm{pH}=4.76$ (accept $4.5-4.9$)	ONE of: - Recognises that at point A there is a buffer solution. - States that equimolar amounts of acid / base conjugate are present at A. - States that pH will not change when small amounts of acid or base are added. - Correct $\mathrm{p} K_{\mathrm{a}} / \mathrm{K}_{\mathrm{a}}$	Describes how a buffer works (for when both acid AND base are added) by: EITHER - Giving equations for the specific buffer OR - Writing about how a buffer works in general terms OR - Links that due to equimolar	Shows recognition of equimolar HEt and Et^{-}thus $\mathrm{p} K_{\mathrm{a}}=\mathrm{pH}$ and discusses how the buffer solution works and links to equations.
(b)	B At the equivalence point all the HEt has been neutralised by NaOH .	AND	- Links that due to equimolar HEt and Et^{-}thus $\mathrm{pK}_{\mathrm{a}}=\mathrm{pH}$	AND
	$\mathrm{HEt}+\mathrm{NaOH} \rightarrow \mathrm{EtNa}+\mathrm{H}_{2} \mathrm{O}$ The $E t^{-}$reacts further to a small extent with water.	ONE of: - Recognises that all the HEt has been used up at B.	- Recognises that none of the original HEt remains as ithas all reacted with NaOH	
	$\mathrm{Et}^{-}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{HEt}+\mathrm{OH}^{-}$ Thus the pH of the equivalence point is above 7 due to presence of OH^{-}.	- That the pH of equivalence point is greater than 7. (must have clearly indicated that point B is the equivalence point)	OR - That the pH of equivalence point is greater than 7 with a valid reason.	Uses two equations to explain why the pH is above 7. (One equation may be implied in the candidate's written answer.)

Judgement Statement

Achievement	Achievement with Merit	Achievement with Excellence
$3 \mathbf{A}$	$2 \mathbf{M}+1 \mathbf{A}$	$2 \mathbf{E}+1 \mathbf{A}$

